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Abstract
This paper presents a new method of extracting LF model based
parameters using a spectral model matching approach. Strate-
gies are described for overcoming some of the known difficul-
ties of this type of approach, in particular high frequency noise.
The new method performed well compared to a typical time
based method particularly in terms of robustness against distor-
tions introduced by the recording system and in terms of the
ability of parameters extracted in this manner to differentiate
three discrete voice qualities. Results from this study are very
promising for the new method and offer a way of extracting a set
of non-redundant spectral parameters that may be very useful in
both recognition and synthesis systems.
Index Terms: LF model, voice source, parameterisation, ro-
bustness, classification.

1. Introduction
Robust extraction of parameters describing the nature of the vo-
cal fold vibration remains desirable for many speech technol-
ogy applications. An example of the successful usage of in-
formation describing the glottal waveform in parametric speech
synthesis can be seen in [1]. Despite this, the potential of voice
source information in synthesis and recognition systems has yet
to be fully exploited.

The standard technique for obtaining an estimate of the
glottal waveform from the speech waveform is to use anti-
resonance filters to cancel the effect of the vocal tract. A time
domain model such as the LF model [2] can then be fitted to
each pulse in the glottal waveform. This allows the extraction
of a set of non-redundant parameters which can also be useful
in controlling the sound source in parametrc speech synthesis.

A difficulty with time domain model fitting is that small
amounts of noise can upset time point estimation and seriously
affect the robustness of the parameters [3]. Furthermore even
very high quality recordings frequently suffer phase distortion,
introduced by the recording system. Some voice researchers
compensate for this, e.g., [4], however, they are by far in the
minority. Although phase distortion is unlikely to affect the per-
ception of recorded signals it is a necessary requirement of time
based characterisation of the glottal flow as differences in phase
cause variation to the shape of the waveform. This issue pro-
vides a serious block to the consistency and reproducibility of
voice analysis recorded speech segments.

One obvious way around phase non-linearity is to take mea-
surements from the amplitude spectrum of the voice source sig-
nal. However, most spectral parameters tend to describe just the
very low frequencies and have been shown to be highly corre-
lated and hence suffer from redundancy [4]. For this reason it
would be desirable to fit a model to the glottal flow spectrum.
This approach has been attempted in previous studies [5] where

noise and inappropriate error functions where suggested as rea-
sons for not producing robust parameterisation.

The current study details a spectral parameterisation
method for extracting LF model-based parameters which at-
tempts to deal with the issues highlighted in [5]. The paper
describes an excerpt of results from a full comprehensive ro-
bustness testing process applied to the method.

2. Methods and Materials
2.1. The LF model and its spectrum

The LF model has been the most commonly used model of glot-
tal flow for more than two decades. It is a four parameter model,
with a further parameter implicitly set from these parameter set-
tings to ensure that the area above and below the zero line is
equal. A typical set of parameters is one amplitude parameter
Ee and three time points te, tp and ta. We use a transformed
set of the time parameters (the R-parameters) stated below.

Rg =
1

2× tp × f0
, Rk =

te − tp
tp

, Ra = ta × f0

(1)
[6] gives a detailed description of the spectrum of the LF

model and the spectral consequences of specific parameter vari-
ations. One observation was that Ra variation mainly affects the
higher frequencies. Although this observation is correct, the LF
model’s area balance principle implies that increases in Ra (i.e.
increasing the pulses return phase) increases the area below the
zero line and results in the maximum amplitude of the pulse
also being increased (see panels A and B in Fig. 1). This in turn
impacts on the lower frequencies of the LF model’s spectrum.
In fact none of the R-parameters affect a specific contained area
of the spectrum.

2.2. LF based spectral parameterisation

In [5] the author suggested that problems in fitting the LF model
spectrum to the glottal flow spectrum was due, in part, to noise
in the high frequencies. As Ra is the main parameter for de-
scribing the higher frequencies it will clearly be affected by
this. Furthermore due to changes in area balance this will also
affect the other two R-parameters (Rk and Rg), meaning high
frequency noise affects the robustness of all three R-parameters.
Also, when using optimisation algorithms with a standard sum
of squares error function to fit the LF model spectrum to the
glottal flow spectrum it will predominantly produce unaccept-
able fits even when inputting good initial values. The following
is a description of how our Frequency Domain Matching system
(shortened to FreDoM for this study) deals with these difficul-
ties.
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Figure 1: Panel A and B shows the effect of Ra variation (with
other parameters constant) on the generated LF pulses and
their spectra. Panel C and D shows the same effect but with
the area balance parameter held constant.

The first step is to derive an estimation of the glottal wave-
form. In this study both automatic and manual methods are
used. For the automatic method glottal closure instants (GCIs)
are first computed using an implementation of the algorithm
outlined in [7]. Speech signals are then inverse filtered using
an implementation of the Iterative Adaptive Inverse Filtering
(IAIF) method described in [8]. Manual inverse filtering is done
using the method described in full in [9].

For the next step a codebook of a large number of LF model
parameter variations and their corresponding first harmonic mi-
nus second harmonic (H1∗-H2∗) was developed. It should be
noted at this point that unless otherwise stated all spectral mea-
surements are made using a 256-point Hamming window cen-
tred on a GCI. When considering the LF model spectrum we are
referring to a single LF pulse with identical pulses concatenated
and again the window centred on a GCI. This stage measures
H1∗-H2∗ from the glottal waveform spectrum and searches the
codebook to find the closest H1∗-H2∗ value and extracts the
corresponding LF model parameter values.

The fitting stage involves the use of two optimisation parts
both of which use the well-known Nelder and Mead algorithm
[10]. The first optimisation part attempts to fit an LF model
spectrum to the glottal waveform spectrum using the initial val-
ues obtained from the codebook look-up. The algorithm tries
to minimise the error between the first six harmonics of the
two spectra by varying all the LF model parameters (with f0
set). Differences between the model’s H1 and H2 and the glot-
tal waveform’s H1 and H2 were doubled in the error function in
order to prioritise their matching.

The next part uses the optimisation algorithm to vary just
Ra in order to minimise the error between the two spectra in
the higher frequencies. The LF model is modified for this pro-
cedure by keeping the area balance parameter constant. This
essentially means using the area balance parameter from the al-
ready fitted set and allowing variation of Ra without affecting
the area balance, see panels C and D in Fig. 1. This has the ef-
fect of allowing variation of the higher frequencies of the model
with little impact on the already fitted lower frequencies.

2.3. Recordings

The speech segments used in this study come from the record-
ings used in [4] and were kindly provided to us by the authors.
The original data were comprised of 11 native Finnish speak-
ers, 6 of which were female, aged between 18 and 48 years.
In this study one female speaker has been excluded. Speech
was recorded with a unidirectional Sennheiser electret micro-
phone together with a preamplifier and a digital audio recorder.
Phase distortion was compensated for by obtaining the impulse
response of the recording device, using a maximum length se-
quences (MLS) method [11], and convolving the recorded sig-
nals with the impulse response signal time reversed.

The speakers uttered eight Finnish vowels /A e i o u y æ ø/ in
breathy, neutral and pressed phonation and each vowel was re-
peated three times. Prior to recording participants were trained
to produce these voice qualities. While conducting the record-
ings participants were monitored to ensure consistent renditions
of the particular voice qualities. After receiving the data we
had a voice quality expert listen to all the speech segments who
marked 23 of the total 720 vowels as not being representative of
the particular voice quality. These vowels were excluded from
the analysis in this study.

2.4. Evaluation

The job of evaluating voice source parameterisation methods is
a very difficult task. An a priori knowledge of voice source
parameter values does not exist so accuracy or error measure-
ments are not possible when analysing human utterances. The
approach to evaluation used in this study was used (1) to specif-
ically assess the robustness of the extracted parameters and (2)
to test their ability to differentiate 3 voice qualities.

The procedure for testing robustness is based on the method
used for assessing the popular normalised amplitude quotient
(NAQ) parameter [3]. 30 test signals were created by selecting
an /æ/ vowel in breathy, neutral and pressed phonation modes
from each of the 10 speakers in the recordings. Each signal was
carefully inverse filtered using the manual fine-tuning method
(described in [9]) and one pulse from each was selected. Each
test signal was created by concatenating 10 identical pulses.

To test the new method’s ability to cope with difficult con-
ditions three simulations were applied to each of the test sig-
nals. The first two involved applying additive Gaussian (zero
mean) noise with differing signal to noise ratio (SNR): 45 dB
SNR (moderate noise level) and 30 dB SNR (high noise level).
These simulations were chosen to test the robustness of parame-
terisation in two levels of noisy conditions. The third simulation
involved convolving original test signals with the impulse re-
sponse of the recording equipment (previously used to compen-
sate for phase distortion). The purpose of this was to test both
systems ability to deal with the distortions imposed on recorded
signals by one particular recording setup.

In total 120 test signals were automatically parameterised
using the new spectral approach described in this paper and a
standard time based LF model parameterisation tool (an imple-
mentation of the algorithm described in [12] and is commonly
used in other voice source analysis tools [13, 14]). Parame-
ters values were analysed using two measures; relative change
(RC) and Wilk’s coefficient of variation (CV). RC was used to
quantify the size of the effect of the three simulations on the pa-
rameterisation. CV was used to measure the amount of pulse-
to-pulse variation of parameter values. The equations used for
deriving these statistics are the same as those stated in [3]. Out-
liers, which were considered to be values that were over 2.5



standard deviations from the mean, were removed.
The second evaluation procedure involved testing the abil-

ity of the extracted parameters to differentiate the three voice
qualities. The first part of this involving testing individual pa-
rameters. Linear regression analysis was used which involved
putting the voice quality labels as the independent variables and
the parameter values as the dependent variables. R2 values were
extracted which would demonstrate levels of explained vari-
ance. The second part of this evaluation stage was conducted
to test the ability of the combination of extracted parameters to
differentiate the voice qualities. Linear discriminant analysis
(LDA) was used for this. A set was compiled with parame-
ter values and the corresponding voice quality label for each
vowel, for the new method and the time based one. Each set was
randomly partitioned into 10 sets all with equal proportions of
voice qualities. One of the ten sets was held as a testing set with
the other 9 being used for training the classifier and classifica-
tion accuracy was outputted in the form of a confusion matrix.
This was repeated another 9 times each time with a different set
being held out as the test set and all the confusion matrices, for
each method, were summed.

3. Results
Due to space limitations this section presents only a summary
of the results obtained from the evaluation procedure. A full
account of the results will be reported in due course.

RC and CV scores used in the robustness testing are pre-
sented in Figures 2 (signals with moderate noise levels), 3 (sig-
nals with high noise levels) and 4 (signals convolved with the
impulse response of the recording system). CV scores are con-
sistently lower for the FreDoM method compared to the time
based method. The same is seen for RC scores for signals con-
volved with the recording system’s impulse response (Fig. 4).
For signals with moderate noise levels scores were more mixed
with the time based system producing lower scores for pressed
signals. For breathy and neutral signals RC scores were quite
similar across the two systems. This is matched quite closely in
RC scores for signals with high noise levels.

R2 scores are presented in Table 1. The FreDoM param-
eterisation method produced higher scores for each parameter
for all the data and for gender separated analysis. Classifica-
tion scores can be seen in Table 2. The new method produced
higher classification scores of all three voice qualities. For neu-
tral phonation, however, scores from both methods a rather low.
Table 1: R2 values for each parameter, using both methods of
parameterisation, with the voice qualities as the independent
variables. Values are given in percentage

All Male Female
Freq Time Freq Time Freq Time

Rg 22.2 7.8 31.6 11.7 16.7 4.9
Rk 22.8 7.4 27.8 9.9 19.1 6.1
Ra 4.9 0.04 4.3 2.3 6.4 0.04

4. Discussion & conclusion
A new frequency domain method of extracting LF model-based
parameters was presented here along with a section of the re-
sults of a larger evaluation study. The parameters extracted from
the new method, shortened to FreDoM for this study, displayed
comprehensively better results in terms of explained variance
than a typical time domain method. R2 scores for Ra, however,

Ra Rk Rg Ra Rk Rg Ra Rk Rg
0

2

4

6

8

10

R
el

at
iv

e 
C

ha
ng

e 
(%

)

Parameters

 

 

FreDoM

TimeParam

NEUBRE PRE

Ra Rk Rg Ra Rk Rg Ra Rk Rg
0

5

10

15

20

25

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n 
(%

)

Parameters

BRE NEU PRE

Figure 2: Top, Relative change (%) and bottom, Coefficient of
variation (%) for the three R-parameteres in breathy, neutral
and pressed signals with moderate noise levels (45 dB SNR)
added, using the new FreDoM method and a time domain sys-
tem (n = 10). Error is expressed as ± SEM.
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Figure 3: Top, Relative change (%) and bottom, Coefficient of
variation (%) for the three R-parameteres in breathy, neutral
and pressed signals with high noise levels (30 dB SNR) added,
using the new FreDoM method and a time domain system (n =
10). Error is expressed as ± SEM.
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Figure 4: Top, Relative change (%) and bottom, Coefficient of
variation (%) for the three R-parameteres in breathy, neutral
and pressed signals convolved with the impulse response of the
recording system, using the new FreDoM method and a time
domain system (n = 10). Error is expressed as ± SEM.

Table 2: Confusion matrix of classification scores (%) of the
three voice qualities using the two systems.

Spec Time
Bre Neu Pre Bre Neu Pre

Bre 79 20 1 76 22 2
Neu 32 47 21 42 43 15
Pre 6 24 70 8 28 64

were very low which may suggest that its values vary consider-
ably from speaker to speaker. The poor performance of the R-
parameters extracted using a time based method here was also
reflected in a previous study using the same dataset [4].

The classification scores suggest that the FreDoM system
is generally better at classifying these three voice qualities. The
low scores for neutral phonation may be due to the large vari-
ability in the organic voice quality of each of the speakers which
may have come through most using their neutral phonation.
If the classification was speaker dependent this score may be
higher and indeed for gender specific classification (not pre-
sented here due to space limitations) scores for neutral phona-
tion in particular were considerably higher.

The most striking result from the robustness testing was
that in almost every instance the FreDoM method was less sen-
sitive to distortions on the signal introduced by the recording
system. This is likely to be in part due to avoidance of phase
non-linearity issues when taking measurements from the ampli-
tude spectrum. This result suggests that if the transfer function
of the recording system has not been compensated for then the

FreDoM method may be more suitable for producing more con-
sistent results.

The other impressions form the robustness testing were
that while the FreDoM method produced clearly lower pulse-
to-pulse variation with the two levels of noise, the results in
terms of change in parameter values with each of the simula-
tions (shown by relative change) were more inconsistent. Future
work will require development of further methods for dealing
with these noise levels.

Overall results are very promising for the new FreDoM pa-
rameterisation method and future research will involve expand-
ing the set of voice qualities in the analysis, parameterisation of
more dynamic running speech.
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