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Abstract
According to the source-filter model of speech produc-

tion, speech can be represented by passing the excitation signal
through the vocal tract filter. The epoch or instant of maxi-
mum excitation corresponds to the glottal closure instant. Sev-
eral speech processing applications require robust epoch detec-
tion but this can be a difficult task. Although state-of-the-art
epoch estimation methods can produce reliable results, they are
generally evaluated using speech recorded with a neutral voice
quality (modal voice). This paper reviews and evaluates six
popular algorithms for the calculation of glottal closure instants
on speech spoken with modal voice and seven additional voice
qualities. Results show that the performance of each method is
affected by the voice type and that some methods perform better
than others for each voice quality.
Index Terms: GCI, epoch detection, glottal source

1. Introduction
During voiced speech the vocal tract is excited by the modulated
glottal airflow, produced by the vibration of the vocal folds. The
moment of significant excitation or glottal closure instant (GCI)
will be referred to as the glottal epoch in the current work. The
glottal epoch is thought to have considerable perceptual impor-
tance not least because of the influence it has on the perceived
pitch of the vocal production. Furthermore, it has been sug-
gested that human listeners rely heavily on the presence of glot-
tal epochs when perceiving speech in degraded conditions [1].

Being able to accurately identify glottal epochs is essential
for a range of speech processing applications. For example ac-
curate epoch locations are needed for deriving estimates of the
glottal waveform using closed-phase inverse filtering [2] as well
as other glottal inverse filtering methods (see e.g. [3]). Epoch
locations are also usually required for pitch and speech rate
modification using pitch-synchronous overlap-and-add meth-
ods, as well as for reducing phase mismatches in unit-selection
speech synthesis [4].

A current direction of our research is to improve the fine-
grained modelling of the glottal source waveform and to ex-
ploit this modelling in parametric speech synthesis [5]. Such
approaches provide the potential for more flexible and possi-
bly more expressive speech synthesis. It is, hence, desirable
to be able to appropriately model non-modal voice qualities
which play an active role in expressive speech. This has im-
plications for epoch detection as non-modal voice qualities may
display different glottal closure characteristics than those found
in modal speech. For instance, it has been demonstrated that the
glottal closure in breathy voice qualities is more of a smooth and
sinusoid-like transition than the sharp closure in modal voice

[6]. Epoch detection in creaky voice qualities presents an even
stronger challenge. Many algorithms involve setting likely F0

ranges, but as creaky phonation usually produces F0 values
below 70 Hz successful detection of epochs in such cases is
unlikely. Furthermore, as certain voice qualities (e.g., creaky
voice) can involve multiple excitations within a single glottal
cycle the traditional definition of a glottal epoch is challenged.

It may be the case that for successful epoch detection in a
range of voice types, certain epoch detection algorithms are ro-
bust in certain situations and other algorithms are suited to oth-
ers. Most evaluation work on epoch detection has been carried
out on modal, read speech by different speakers using databases
like the ARCTIC database [7]. For the evaluation in the present
work we looked to determine the accuracy of popular epoch
detection algorithms on a common speech database of neutral
voice as well as from sentences produced in different voice
qualities. From this we hope to determine which algorithms
provide robust epoch detection in modal speech as well as high
accuracy in non-modal voice qualities. Furthermore, findings
may demonstrate the need for further developments in epoch
detection algorithms in the context of particular voice qualities.

2. Epoch Detection Approaches
This section reviews the methods for detection of the glottal
closure instants which were evaluated in this work. It should
be noted that the code for all the methods used in the present
work were original implementations with the exception of the
wavelet-based method which, as it was unavailable in its orig-
inal form, was implemented by authors following the descrip-
tions in the relevant paper [6] (described in Section 2.5).

2.1. Normalised Cross-Correlation on the Residual

A common pitch-tracking technique consists of detecting an op-
timal sequence of peaks from the quasi-periodic speech signal
using dynamic programming applied to the correlation func-
tion, e.g. [8]. In this work, we use a popular epoch detec-
tion method which computes the normalised cross-correlation
function (NCCF) on the linear prediction (LP) residual and uses
dynamic programming to select the optimal sequence of NCCF
(epoch estimates) across all short-time signals [9] (labelled here
as ESPS). This epoch detector is available in the ESPS/waves+
software package.

2.2. Residual Phase

The Dynamic Programming Projected Phase-Slope Algorithm
(DYPSA) [10] is a commonly used method for extracting glot-
tal epochs and its implementation is available in the VOICE-
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BOX Matlab toolbox. Initially the algorithm finds epoch can-
didates using an adaptation of the algorithm described in [11],
which uses the phase slope of the group delay function. The
method then uses a dynamic programming algorithm to min-
imise a weighted cost function (which is consists of Frobenius
norm, pulse similarity and phase slope deviation cost elements).

2.3. Energy Contour of the Speech Signal

The algorithm described in [12] is commonly used particularly
in methods for voice conversion/modification (here labelled
find pmarks). This method first obtains epoch candidates from
the peaks of the filtered energy contour of the speech signal.
Dynamic programming is used to find the best path of peaks
that produce maximum energy and then to find the most likely
epoch location for each frame, which is centered around the lo-
cation of the epoch candidate.

2.4. Mean-based signal functions

In this study we also evaluate two methods that use a so-
called mean-based signal for glottal epoch detection. The first
method, which is described in [1], draws on observations that
the impulse-like nature of the glottal closure is reflected across
all frequencies, including 0-Hz, just as an ideal impulse. The
method first derives the difference-speech signal, x(n), by sub-
tracting the previous speech sample from the current sample.
x(n) is then twice passed through an ideal resonator at zero fre-
quency to give yz(n). The zero frequency signal y(n) is then
derived as follows

y(n) = yz(n)− 1

2N + 1

N∑

m=−N

yz(n+m) (1)

where 2N + 1 is the number of samples in the 10 ms interval.
Finally, the time instants of the positive zero-crossings are used
as the glottal epochs. In this paper this method is labelled ZZF
(Zeros of the Zero-Frequency resonator).

The next method, called SEDREAMS (Speech Event De-
tection using the Residual Excitation And a Mean-based Sig-
nal), uses a modified version of (1) to derive the mean-based
signal y(n) from the speech signal (originally described in
[13]). In this case, the minima and following positive zero-
crossings from the y(n) signal are used to define time intervals
between which the glottal epoch is expected to lie. In the most
recent implementation of the method which was provided by the
authors of [13], these intervals are defined as starting from the
mean-based signal minima and spanning 0.35 the local pitch pe-
riod (defined as the distance between consecutive minima). The
epoch location is then detected by finding local maxima in the

LP-residual (24th order) that fall within the expected intervals.

2.5. Wavelet Transform

Features of the wavelet transform have been used for finding
glottal epochs due to their suitability at detecting singularities
in signals [6, 14]. In this work, we opted to implement the algo-
rithm described in [6]. This method uses wavelet decomposition
of the speech signal at eight octave bands of the spectrum using
the mother wavelet, which is given by

g(t) = −cos(2πFnt) · exp(− t2

2τ2
) (2)

where Fs = 16 kHz is the sampling rate, Fn = Fs
2

and τ =
1

2Fn
. Maxima are initially computed in the smallest wavelet

scale with significant maxima (the authors suggest the wavelet

at 4 kHz). From each of these maxima an optimal line is de-
rived by descending through the scales producing Lines of Max-
imum Amplitude (LOMA). The epoch LOMA is selected as the
LOMA with the highest energy within the expected pitch pe-
riod. The location of the epoch is then considered to be index
of the highest scale maximum. Insertion errors are removed
following a post-processing procedure which considers consec-
utive pitch period and accumulated LOMA amplitude changes.
The method was reported to be suited to both sharp and smooth
glottal closure (which are usually found in breathy signals or
during voice offset).

3. Evaluation
Epochs estimated from the electroglottographic (EGG) signal,
which is a measure of the conductivity in the vocal folds, were
used as reference epochs to evaluate the epoch detection algo-
rithms. The epochs estimated using each of the methods de-
scribed in the previous sections were then aligned with the ref-
erence epochs for each sentence, in order to calculate error mea-
surements.

3.1. Speech Databases

Two American English voices from the ARCTIC speech
database [7] were used for the evaluations, one male and the
other female (the bdl and slt voices respectively). This database
contains the same 1312 speech sentences spoken by the two
speakers with a neutral voice quality (modal voice) and the re-
spective EGG signals, from which the first 100 sentences were
selected for the evaluation. We used this subset of the corpora
instead of the whole number of sentences due to time constraints
in checking and manually correcting the epochs detected from
the EGG signal.

An additional database was used which consisted of ten
sentences spoken by a native UK English speaker [5]. Both the
speech and EGG signals were also available in this corpus and
it included the sentences recorded in seven different voice qual-
ities besides the modal voice: breathy, creaky, falsetto, harsh,
lax, tense, and whisper (hence, 80 sentences in total). The sen-
tences recorded with whisper were not used in this experiment
because there is no glottal vibration present during the produc-
tion of whisper. Furthermore, following listening to the sen-
tences by two individuals involved in voice quality research all
the sentences labelled ‘creaky’ were deemed not to display the
auditory or acoustic characteristics of that particular voice qual-
ity. Instead, they were perceived as tense voice quality. How-
ever, they were not excluded from the analysis. In order to
make clear that no evaluation of epoch detection of creaky voice
qualities is covered in this paper those sentences are labelled
as: creaky*. Another difference between this dataset (labelled
Male VQ) and the ARCTIC is that the first contains sonorant
sentences only (all-voiced), which avoids voicing classification
errors.

3.2. Calculation of Reference Epochs

The amplitude of the EGG signal is higher the closer the vo-
cal folds are to each other. The epochs can be estimated us-
ing a simple method to detect the maximal peaks in this signal.
This peak tracking technique is usually effective and accurate
because the EGG signal is highly periodic and has little noise
and other aperiodicity effects, which are common in the voiced
parts of the speech signal or the glottal source derivative sig-
nal estimated from speech. For calculating the epochs from the
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EGG signal, we used the pitchmarks function of the Edinburgh
Speech Tools [15] and a post-processing step to align the can-
didate epochs to the nearest peaks of the EGG signal. We did
not find a significant delay between the EGG and the respective
speech signal for the ARCTIC databases (we believe the avail-
able signals already have the delay corrected). However, we
took into account the delay for the Male VQ dataset (approxi-
mately 0.9 ms).

Although the use of the EGG signal for epoch detection
can provide accurate results, occasionally incorrect epoch de-
tection or missing epochs may occur. We observed that an ir-
regular shape of the EGG signal, e.g. containing more then
one pulse during the glottal period, the ineffective removal of
the DC component and noise effects were the most important
causes of these errors. False epoch detection was the type of er-
ror we found most frequently. This problem was mainly due to
the effect of multiple pulses occurring during one glottal period
which caused multiple zero crossings in the derivative of the
EGG and it was very common for speech spoken with certain
voice qualities, such as breathy and harsh voice. The epochs
estimated using the EGG signal were manually checked by the
authors and the false detected epochs were deleted. Besides re-
moving epochs, no other type of correction was made because
the epochs obtained from the EGG were expected to be accurate
and we very rarely found that it was necessary to insert epochs.

3.3. Evaluation of Epoch Detection Methods

A recursive algorithm was developed in this work to perform the
alignment between the epochs estimated using the EGG signal
(reference epochs r(n)) and the epochs estimated from speech
using the different epoch detection techniques (test epochs
e(p)). Figure 1 shows the block diagram of this algorithm.

We found that the epochs estimated using the ZZF method
have an approximately constant offset compared to the EGG
epochs. We tried to compensate for this delay by shifting the
ZZF epochs by a positive factor of 0.7 ms for ARCTIC and
0.3 ms for Male VQ sentences.

In order to avoid the effect of differences between the voic-
ing classification part of the methods (some methods do not in-
clude a voiced/unvoiced decision), we removed the test epochs
generated by each method which were aligned to unvoiced
pitchmarks of the EGG signal (the vector of reference epochs
included equally spaced epochs in unvoiced regions). However,
these unvoiced pitchmarks were only used for this purpose and
they were discarded in the calculation of the evaluation metrics.

We opted to use similar evaluation metrics to those used in
previous studies [1, 10, 13] to allow meaningful comparisons
with the results obtained in the current work. The identification
error, ζ, is measured as the difference between a given reference
epoch r(n) and the aligned test epoch e(p). The Identification
Accuracy metric (IDA) is defined as the standard deviation of
ζ. We also use the mean squared error (MSE) of ζ. Another
metric is the Miss Rate (MR), which is the percentage of glottal
cycles for which the algorithm does not detect an epoch. In this
work, it is calculated as the rate of ‘insertions’ obtained from
the alignment described in Figure 1. Finally, the False Alarm
Rate (FAR) is calculated as the percentage of the total number
of test epochs not aligned with reference epochs.

For the voice quality sentences we examined whether voice
quality as a factor affected the squared identification error, ζ2,
for all the values from the different algorithms combined using
a one-way ANOVA. Then to further examine the effects of the
voice qualities and the algorithm types we performed a two-way

f=[e(1) ... e(P)]

to the reference epoch r(n)

Find closest epoch e(m) in vector f

with n=1 ... N

For each reference epoch r(n)

Align e(m) to r(n) and

set f=[e(m+1) ... e(p)]

Exists Doesn’t exist

Yes No

Yes
No

Insertion

Align e(m)

f=[e(m+1) ... e(P)]f=[e(1) ... e(m−1)]

Is e(m) aligned

n=n−1

to r(n−1)?

Is distance
to r(n) lower?

to r(n)

Initial vector of test epochs

Figure 1: Block diagram of the algorithm for alignment of the
reference epochs (EGG epochs) to the test epochs.

ANOVA (with voice quality and algorithm type as factors) also
on ζ2. Post-hoc testing was done using Tukey’s HSD (Honestly
Significant Difference) test.

4. Results
4.1. ARCTIC Dataset

The overall results for the ARCTIC dataset (combined male
and female speakers) are presented in the upper part of Ta-
ble 1. The find pmarks method performs clearly worse than
the rest with considerably higher mean values for all metrics.
The ESPS, ZZF, SEDREAMS and wavelet methods obtained
comparable IDA and MSE values. However, the ESPS and ZZF
methods obtained considerably higher MR than the other two,
whereas the wavelet method obtained higher FAR. Since this
was not the original implementation of the wavelet algorithm,
the post-processing used in the original implementation may re-
duce the FAR. Previous studies showed that the SEDREAMS,
ZZF and the wavelet methods outperformed DYPSA in terms
of IDA [1, 6, 13] and this seems apparent again in this study.

4.2. Dataset with Different Voice Qualities

The overall results obtained for the voice quality dataset are pre-
sented in the lower part of Table 1. They show that the ESPS
and SEDREAMS methods are comparable to each other and
better than the other methods (with the exception that ESPS has
higher MR than SEDREAMS). The DYPSA method performs
relatively better for this dataset than ARCTIC, obtaining simi-
lar results to the wavelet method in terms of accuracy. However,
the FAR and MR are still higher for DYPSA (we observed that
the latter was due to a significant high MR for falsetto voice
quality). Also, the ZZF method is worse in terms of accu-
racy compared to the previous methods but obtains good re-
sults in terms of MR and FAR. Similar to the ARCTIC voices,
the find pitchmark epoch detector performed worse than the
other methods.

One-way ANOVAs revealed a significant effect of voice
quality on ζ2 (F = 136.26, df = 6, p < 0.001). Post-hoc
analysis revealed no significant differences (p > 0.05) for the
pairs: breathy-lax, harsh-creaky*, modal-creaky*, modal-tense
and tense-creaky*, but with significant differences for all other
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Table 1: Results of the epoch estimation methods for the two
ARCTIC sets (combined) and the Male VQ set in terms of IDA
(identification accuracy (ms)), MSE (mean squared error), MR
(miss rate %) and FAR (false alarm rate %)

Dataset Method IDA MSE MR FAR

ARCTIC ESPS 0.63 0.50 4.19 1.08
ARCTIC DYPSA 0.82 0.68 2.54 4.33
ARCTIC find pmarks 1.06 1.12 0.94 3.78
ARCTIC ZZF 0.64 0.45 3.22 1.89
ARCTIC SEDREAMS 0.65 0.42 1.16 1.86
ARCTIC wavelet 0.69 0.53 1.22 3.88

Male VQ ESPS 0.45 0.21 1.0 0.7
Male VQ DYPSA 0.56 0.33 1.5 4.1
Male VQ find pmarks 1.35 1.86 0.5 4.1
Male VQ ZZF 0.67 0.63 1.0 0.4
Male VQ SEDREAMS 0.48 0.27 0.5 0.4
Male VQ wavelet 0.57 0.39 1.3 1.4
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Figure 2: Identification Accuracy (IDA) for the epoch detec-
tion methods (excluding find pmarks which obtained signif-
icantly higher values) across the seven voice qualities.

pairwise comparisons. Figure 2 also shows that the epoch detec-
tion accuracy (IDA) generally varies in terms of the voice qual-
ity. For example, ESPS demonstrates clearly better accuracy
for harsh voice compared to the other methods. On the other
hand, SEDREAMS seems to be more accurate (lower IDA) than
ESPS for lax, breathy and falsetto, although the difference is
only significant for falsetto (p < 0.01). Figure 2 also suggests
that the accuracy of ESPS, SEDREAMS and ZZF tends to be
worse for lax and breathy voices compared to modal. This re-
sult could be due to the effect of aspiration noise which is char-
acteristic of the breathy and lax voices, especially for the ESPS
and SEDREAMS which estimate epochs by detecting ampli-
tude peaks of the LP-residual. Furthermore, as was observed
in [6] the smoother glottal closures usually present in lax and
breathy voice qualities may also provide difficulties for epoch
detection.

5. Conclusion
This study showed that the voice type has an impact on the ro-
bustness of epoch detection. Of the algorithms investigated,

the ESPS and SEDREAMS methods performed similarly and
generally obtained the best epoch identification accuracy across
the voice qualities. Moreover, the SEDREAMS method also
displayed the lowest false alarm and miss rates. The results
obtained in this work can be used to select a suitable method
for different types of voice quality in terms of different criteria:
identification accuracy, false alarm rate and miss rate.

Future work will involve the inclusion of creaky voice qual-
ities in the evaluation of epoch detection as well as development
of methods suited to the characteristics of creaky and breathy
voice qualities. The factors which affect the performance of the
epoch estimation methods for different voice qualities will also
be further investigated. Finally we plan to extend these experi-
ments to include speech data from a larger number of speakers.
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