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ABSTRACT

Voice quality plays a pivotal role in speech style variation. There-
fore, control and analysis of voice quality is critical for many areas
of speech technology. Until now, most work has focused on small
purpose built corpora. In this paper we apply state-of-the-art voice
quality analysis to large speech corpora built for expressive speech
synthesis. A fuzzy-input fuzzy-output support vector machine clas-
sifier is trained and validated using features extracted from these cor-
pora. We then apply this classifier to freely available audiobook data
and demonstrate a clustering of the voice qualities that approximates
the performance of human perceptual ratings. The ability to detect
voice quality variation in these widely available unlabelled audio-
book corpora means that the proposed method may be used as a
valuable resource in expressive speech synthesis.

Index Terms— Voice quality, glottal source, speech synthesis,
expressive speech, audiobooks

1. INTRODUCTION

Voice quality is the perceptual colouring of a person’s voice [1]. It
is affected by long-term physiological and anatomical settings of the
vocal system as well as dynamic shifts in phonation type used for
various communicative purposes. Voice quality is an important fac-
tor in the perception of emotion in speech [2] and makes a key con-
tribution to the style and uniqueness of a speakers voice [3].

As voice quality plays a critical role in portraying our individ-
uality as well as internal affective states, the ability to detect, and
synthesise voice quality changes without compromising naturalness
is a key objective for current speech technology. The effective char-
acterisation of shifts in voice quality has potential in speech technol-
ogy applications like: speech synthesis with flexible voices [4, 5, 6],
emotion identification [7, 8], speech recognition [9], speaker iden-
tification [10]. However, successful analysis of voice quality faces
a number of challenges: As much of the variation in voice quality
is brought about by substantial change in phonation type, efforts are
usually made to decompose the speech signal into glottal source and
vocal tract constituents. This process is non-trivial, both because of
the difficulty in applying effective methods for modelling the vocal
tract system and because of the limitations of the source-filter model
[11]. Separating within- and across-speaker differences requires the
analysis of large labelled corpora, which are not generally available.
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Also, perceptual responses to voice quality changes can vary by sub-
ject which makes verification of classification more complex.

A further challenge is that the terminology used to describe
voice quality is rather varied in the literature. In this study we adopt
the terminology described in [1]. We are concerned here with lax,
modal and tense voice, which is perhaps the most researched di-
mension of voice quality. The term modal voice is used to depict
a neutral phonation type with low to moderate laryngeal tension
involving periodic vocal fold vibration with a minimum of pulse-
to-pulse irregularities and efficient glottal excitation. Tense voice
typically involves elevated tension throughout the entire vocal sys-
tem, compared to modal voice. In terms of laryngeal settings, tense
voice typically involves moderate increases in longitudinal and ad-
ductive tension [12]. Contrastingly, lax voice is described as having
reduced levels of tension in the vocal system and particularly at the
laryngeal level.

A considerable amount of research attention has been applied to
the design of effective acoustic parameters for characterising voice
quality on a lax-tense dimension, with some notable new develop-
ments [13, 14, 15]. However, using multiple features for the clas-
sification of targeted voice qualities has received considerably less
attention. The study described in [16], presented an approach with
glottal gradients [17] as voice quality features used with a hidden
Markov model (HMM) setup for classifying breathy, modal, rough
and creaky voice qualities. However, the data includes speech from
just four speakers. A recent study [18] involved the design of a clas-
sifier for breathy, modal and tense voice using a range of voice qual-
ity features as input to the so-called fuzzy-input fuzzy-output support
vector machine classifier. The study demonstrated how classification
performance could be improved by leveraging the information con-
tained within the disagreement of multiple voice quality annotators.
Although this study involved a reasonably high number of speakers,
the data were restricted to steady vowels and all-voiced sentences.
Some notable work has also been carried out in [19] where the author
classifies different registers of vocal effort in video-game recordings.

The current research builds on existing studies and develops a
classifier of voice quality on a lax-modal-tense scale using a large
volume of speech data produced by a range of speakers of several
languages. The study then aims at testing the generalisation of the
classification approach to unlabelled corpora of expressive speech.
The research questions can be written explicitly as:

RQ1: Do voice quality features contribute significantly to the clas-
sification of these voice qualities compared to using f0 and
standard spectral features?

RQ2: Can we develop a classifier for lax, modal and tense voice and
validate on a range of speakers of different languages?



RQ3: Can such a classifier be used to cluster voice qualities in unla-
belled corpora of expressive speech to a level which approxi-
mates human perceptual ratings?

2. PROPOSED METHOD

The proposed method combines commonly used spectral features
and f0 with a set of voice quality features which have been specifi-
cally designed to characterise lax, modal and tense voice. This fea-
ture set is used with a classifier recently shown to be effective for
classifying these voice quality classes [18].

2.1. Acoustic features

The first three features are derived from the glottal source signal
estimated by glottal inverse filtering. For many glottal-based fea-
tures the correct signal polarity is required, and this is determined
automatically [20] and corrected when necessary. Glottal closure
instants (GCIs) are then detected using SE-VQ algorithm [21]. It-
erative adaptive inverse filtering (IAIF, [22]) is carried out on GCI
centred Hamming windowed frames of a duration twice the length
of the local glottal period, T0. The IAIF method works by succes-
sive vocal tract all-pole model estimation following the removal of
the estimated glottal source contribution modelled with a prediction
order which increases at each iteration. The output is then the dif-
ferentiated glottal flow (provided the effect of lip radiation has not
been cancelled). The normalised amplitude quotient (NAQ, [23]) is
calculated using:

NAQ =
fac

dpeak · T0
(1)

where dpeak is the negative amplitude of the main excitation in the
differentiated glottal flow pulse, while fac is the peak amplitude of
the glottal flow pulse. The quasi-open quotient (QOQ, [24]) is also
derived from amplitude measurements of the glottal flow pulse. The
quasi-open period is measured by detecting the peak in the glottal
flow and finding the time points previous to and following this point
that descend below 50 % of the peak amplitude. The duration be-
tween these two time-points is divided by the local glottal period to
get the QOQ parameter. The final parameter measured from the glot-
tal source estimate is the difference between the first two harmonics
(H1-H2), from the narrowband spectrum of the glottal source signal.

The following three features do not rely on explicit glottal in-
verse filtering. A recently developed method for deriving the global
shape parameter of the Liljencrants-Fant (LF, [25]) model was de-
scribed in [13]. The algorithm considers the mean squared phase
difference (MSPD). One can utilise the outcome of minimising:

MSPD2(θ,N) =
1

N

N∑
k=1

(
∆−1∆2 6 Rθk

)
(2)

where N = |flim/f0|, k is the harmonic index, flim is the maxi-
mum harmonic frequency and θ is the shape parameter of the glot-
tal model (i.e. Rd). The computation of this objective function in-
volves applying the second order phase difference (∆2) and the anti-
difference operator (∆−1) to the convolutive residual, Rθk. Rθk is
the deconvolution of the given speech spectrum, Sk, by the speech
model. MSPD2(θ,N) is minimised with respect to θ (i.e. Rd) using
the algorithm described in [26].

The final two features involve a dyadic wavelet transform using
g(t), a cosine-modulated Gaussian pulse similar to that used in [27]
as the mother wavelet:

g(t) = −cos(2πfnt) · exp
(
− t2

2τ2

)
(3)

where the sampling frequency fs = 16 kHz, fn = fs
2

, τ = 1
2fn

and
t is time. The wavelet transform, yi(t), of the input signal, x(t), at
the ith scale, si, is calculated by:

yi(t) = x(t) ∗ g
(
t

si

)
(4)

where ∗ denotes the convolution operator and si = 2i. This func-
tions essentially as an octave band zero-phase filter bank. For the
peakSlope feature [14], the speech signal is used as x(t) in Eq. (4).
Maxima are measured across the scales, on a fixed-frame basis, and
a regression line is fit to log10 of these maxima. The slope of the
regression line for each frame provides the peakSlope value. The
feature is essentially an effective correlate of the spectral slope of
the signal. Finally, the measurement of the maxima dispersion quo-
tient (MDQ, [15]) uses the Linear Prediction (LP) residual as x(t) in
Eq. (4). Then using the GCIs, located using SE-VQ, the dispersion
of peaks in relation to the GCI position is averaged across the differ-
ent frequency bands and then normalised to the local glottal period.
For tense voice, where the sharp closing of the glottis is analogous
to an impulse excitation the maxima are tightly aligned to the GCI,
whereas for laxer phonation the maxima become highly dispersed.

We also include 12 Mel-cepstral coefficients (MFCCs) extracted
from the speech signal using Hanning windowed 32 ms frames with
a 10 ms shift. Fundamental frequency (f0) is measured using the
Summation of Residual Harmonics (SRH, [28]) method. All feature
contours are resampled to be updated every 10 ms.

2.2. Classification

For the classification we utilise a further development of support vec-
tor machines (SVM, [29]), the so called fuzzy-input fuzzy-output
SVMs (F2SVM) which are capable of receiving soft labelled data
and producing soft outputs with predicted membershipsmi assigned
over multiple classes for each presented sample [18]. This method
allows us to identify samples for which the F2SVM is (a) certain
about a predicted voice quality, (b) if there is some confusion be-
tween classes, or (c) an intermediate sample is observed. This pro-
posed method has already been successfully utilised for the classifi-
cation of voice qualities in previous work [18]. Here, we train the
F2SVM on the training corpora in the three voice qualities (i.e. lax,
modal, tense) and categorise each sample from the audiobook data
without knowing its ground truth value. The F2SVM then generates
predictions for the class memberships of each sample from the au-
diobook data. These predicted membership assignmentsmi for each
sample are ideal for a post-classification clustering. We use the stan-
dard k-means as the clustering algorithm of choice and utilise the
clustered samples in the perception tests to subjectively evaluate the
capability of the approach to extract targeted voice qualities from the
audiobook data.

3. EXPERIMENTAL PROTOCOL

3.1. Speech data

The CereVoice speech synthesis system uses sub-corpora of neutral,
tense and lax voice quality data in order to produce subtle changes in
emotion [30, 6]. These sub-corpora have been recorded over a five



year period across several languages (English, French, German, Ital-
ian, Japanese), and covering different accents of English (RP, Gen-
eral American, Scottish accent, Irish accent, Northern England, Mid-
lands). This totalled 8 hours and 11 minutes of speech data. All of
the first set of recordings (Acted) were carried out in a recording
studio with a high performance head mounted microphone. Voice
talents were shown by an expert phonetician how to articulate lax
voice and tense voice and were supervised during the recordings.
Despite this, there still exists variability in terms of the articulation
of the voice qualities. Along with the lax and tense recordings, we
also use the recordings of the voice talents speaking with a neutral
voice quality, which we consider as our modal voice set. Admittedly,
a person’s neutral speaking voice can be inherently lax or tense, and
may not strictly correspond to the definition of modal voice given
above (Section 1). As a result this voice quality class inevitably con-
tains the largest variability.

The second set of speech data (Audiobook) consisted of a selec-
tion of two open-source audiobooks (librivox.org). The audiobooks
were selected on the basis that the books were read in a lively fashion
involving frequency variation in voice quality. The first audiobook
was A tramp abroad, by Mark Twain, read by John Greenman (2166
utterances, approx. 2 hrs). The second was Pride and Prejudice
by Jane Austin, read by Karen Savage (2548 utterances, approx. 2.5
hours). Audio was aligned with the text, and segmented into individ-
ual utterances using the method described in [31]. All speech data
was down-sampled to 16 kHz for analysis. For the audiobook data
the utterances selected all had a duration between 2 and 5 seconds.

3.2. Objective evaluation

The classification approach is evaluated in two steps. First we need
to confirm the classifier’s capabilities to accurately predict voice
qualities over a large variety of speakers. Second, we evaluate if
the audiobook data contains varied enough samples that spread over
the full range of targeted voice qualities.

For the first step of the evaluation, we train and test the F2SVM
following a leave one speaker out protocol on the acted speech data.
For this we train the classifier on 18 out of the 19 available speak-
ers and test on the remaining one speaker. This process is repeated
for all of the speakers and leads to a speaker independent classifica-
tion assessment. For the classifier-training and to answer RQ2, we
utilise two different sets of features; one set contains f0 and MFCC
features, and the second set additionally includes the voice quality
features introduced in Section 2.1. The performance of the F2SVM
trained on both feature sets is compared and the overall results for
the acted data classification are reported in Section 4.

For the second step of evaluation, we train the F2SVM on all
the available 19 speakers and run the classification for the samples
available in the two analysed audiobooks, for which no ground truth
labels are available. The predicted fuzzy outputs are clustered using
k-means with k = 5. The three dimensional centroids of the k-means
algorithm are initialised with the three extreme cases (i.e. one of the
three dimensions is 1 and two are set to 0) - the voice quality has
clearly been detected - and two intermediate samples where there is
considerable overlap of membership assignments between the neigh-
bouring classes lax and modal as well as modal and tense (i.e. two
of the entries are set to 0.5 whereas the third is 0). The centroids and
number of assigned samples for each cluster for both audiobooks is
illustrated in Section 4. Samples that are assigned to the three clus-
ters that were initialised to be either clearly lax, modal, or tense are
then selected to be evaluated subjectively.

3.3. Subjective evaluation

In order to be able to compare human perception with the automatic
clustering, and thereby address RQ3, we opted to conduct a web-
based listening test in which we present two groups of stimuli, the
first a set of acted utterances from the three voicing types, the second
a set of utterances from audiobook data categorised into the three
voicing types by the classifier. We then test inter-rater agreement
with the baseline acted voice types - did the voice talent succeed
in creating the voice type, and the classifier - have we successfully
classified the voice types to reflect human classification. Further, we
are interested in the effects and sources of disagreement.

For the web-based listening test, participants were initially pre-
sented with reference lax, modal and tense voice utterances produced
by John Laver [1] and also by a female phonetician trained in the
Laver labelling scheme. The participants were further asked to use
headphones in order to reduce the influence of environmental noise.
Participants then were presented with 36 utterances and had to se-
lect the most appropriate voice quality on a five-point scale: lax (1),
lax-modal (2), modal (3), modal-tense (4), and tense (5), for each ut-
terance. The mixed classes lax-modal and modal-tense allowed par-
ticipants to signal uncertainty between the two class labels. The pre-
sented stimuli were selected from 12 sets of utterances: 2 datatypes
{acted and audiobook} × 2 genders {male and female speakers} ×
3 voice qualities {lax, modal, and tense}. Each set contained 10
unique utterances, resulting in 120 utterances in total. For each par-
ticipant in the evaluation 3 utterances were randomly selected from
each set giving 36 stimuli for each participant. The order of the stim-
uli was randomised.

As mentioned above, audiobook samples automatically clus-
tered into the three confident voice quality clusters (cf. Figure 1)
were qualified to be selected for the perceptual evaluation. For the
acted speech data, one male and one female were selected. The ten
utterances for each set were selected randomly from the available
utterances.

4. RESULTS

4.1. Objective evaluation

As mentioned in Section 3.2, we evaluate the performance of the
classifier on the acted speech. Here, we can observe a performance
of 56.78% (σ = 12.57) accuracy for the F2SVM based on MFCCs
and f0 only. When including the voice quality features introduced
in Section 2.1, the performance significantly (pairwise t-test: T(18)
= 3.46, p < 0.003) rises 7.62% to 64.40% (σ = 13.96) accuracy
for the speaker-independent leave one speaker out validation. This
demonstrates the value of the voice quality features, with an even
increase in accuracy for the three classes, and clearly answers RQ1.

Despite this improvement, the overall classification score is only
moderately good. Unsurprisingly this seems to be mainly due to the
difficulty in accurately classifying modal voice (as shown in Table
1). This may be largely explained by the high degree of variability in
the speakers neutral voice quality, i.e. someone’s ‘normal’ speaking
voice may be inherently lax or tense. Nevertheless, there is rather ef-
fective classification of lax and tense voice with relatively little con-
fusion between the classes lax and tense. These findings correspond
to RQ2 and although reasonably effective speaker independent clas-
sification of lax and tense is demonstrated, further efforts need to be
applied in order to improve classification performance on the modal
voice quality class.

The second step of the objective evaluation aims towards identi-
fying if the audiobooks contain samples with varying voice quality.
For this we predict the voice quality of all the speech samples in



MFCC+f0 MFCC+f0+VQ
L M T L M T

Lax 60.93 26.61 12.44 66.82 24.62 8.54
Modal 29.60 41.02 29.36 23.62 50.86 25.50
Tense 13.62 17.98 68.39 7.89 16.58 75.51

Table 1. Confusion matrices for the leave one speaker out classifi-
cation for both feature sets with and without voice quality features.
Values are in %.
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Fig. 1. Sample k-means clustering of audiobook Pride and Preju-
dice. The outer clusters in the corners are corresponding to the clear
voice qualities (i.e. lax, modal and tense). The inner two clusters are
mixed and not used in the perception test. The cluster centroids are
marked with a black cross.

the audiobook data and cluster them in five distinct clusters, as visu-
alised in Figure 1, using the F2SVM trained on the acted speech with
all 19 speakers. The corners of the triangle shaped space seen in Fig-
ure 1 represent the areas where the classifier clearly could identify
a dominant voice quality to be present, the inner two clusters (dark
and light blue) are intermediate observations with mixed voice qual-
ities. In Table 2, the cluster centroids for the three main clusters (i.e.
lax, modal, and tense) are listed. The values correspond to the mean
assigned memberships by the F2SVM for samples belonging to the
corresponding cluster. The cluster initialisations correspond to the
five possible answers in the perception tests introduced in Section
3.3. The cluster centres strongly correspond to the initialised cen-
troid weights, i.e. the target voice quality for the cluster, except for
the tense cluster of the audiobook data of Pride and Prejudice. In
total 436 samples of the audiobook Pride and Prejudice were asso-
ciated to the lax cluster, 855 of the A Tramp Abroad audiobook. 606
samples of Pride and Prejudice were assigned to the modal cluster
and 717 of the A Tramp Abroad audiobook. Lastly, 235 samples of
Pride and Prejudice were assigned to the tense cluster and only 44
of the A Tramp Abroad audiobook.

4.2. Subjective evaluation

30 participants completed the subjective evaluation described in Sec-
tion 3.3 and display high inter-rater reliability, as assessed using
Krippendorff’s α (All samples: α = 0.87, Acted samples: α =
0.95, Audiobook samples: α = 0.75). We also compute α for the
hard classification output (i.e. the class with maximal membership
assigned arg maxi(mi)) and the majority vote over all the partici-
pants for all the audiobook samples. This gave an α = 0.74 and
demonstrates strong agreement between human ratings and the clas-
sifier output. This is further emphasised by the observation that 88
% of audiobook samples were rated within 1 numerical rating point
of the hard classification output (i.e. this includes, for example, a
sample classified as lax and rated as lax-modal).

We further conduct several ANOVA in order to identify the

Pride and Prejudice A Tramp Abroad
L M T L M T

C-Lax 0.67 0.22 0.11 0.80 0.18 0.02
C-Modal 0.14 0.80 0.06 0.17 0.80 0.03
C-Tense 0.37 0.35 0.28 0.08 0.24 0.68

Table 2. Cluster centroids for the samples of the two audiobooks.
C-Lax, C-Modal, C-Tense represent the cluster centroids for the re-
spective voice qualities as seen in Figure 1.

sources of disagreement within the above observations. For the first
set of analysis we use the absolute difference between the majority
vote of the human rating and the hard classification output as the
dependent variable. The independent variables are (1.i) gender of
the speaker (1.ii) data source (i.e. audiobook data or acted data).
We observe the following: (1.i) the mean difference between human
ratings and classifier output is significantly [F(1,118) = 26.42, p <
0.0001] higher for female speakers (µ = 1.06; σ = 0.89) than for
male speakers (µ = 0.36; σ = 0.55). (1.ii) the mean difference be-
tween human ratings and classifier output is not significant [F(1,118)
= 0.44, p = 0.507] when comparing acted speech (µ = 0.76;
σ = 0.94) and audiobook samples (µ = 0.66; σ = 0.68).

The second set of ANOVA investigates the absolute differences
between the actual label for the acted samples and the (2.i) human
majority rating and (2.ii) the hard classifier output. We observed the
following: (2.i) the differences are significantly higher for the female
voice (µ = 0.66; σ = 0.95) than for the male voice (µ = 0.13;
σ = 0.35) with p = 0.006 and F(1,58) = 8.21 for the ANOVA test.

(2.ii) the differences between the automatic ratings for the acted
speech of the female speaker are larger (µ = 0.60; σ = 0.93)
than for the male speaker (µ = 0.20; σ = 0.61), however, the
ANOVA does not show strong statistical significance with p = 0.054
and F(1,58) = 3.87 for the ANOVA test. There are no significant
differences between the mean absolute differences of (2.i) and (2.ii)
in a paired t-test, which indicates that the automatic classification
yields comparable results to human performance.

The combination of the agreement between the human ratings
and the classifier output (as shown by α = 0.74) together with the
findings from the ANOVA analysis provide ample evidence to ad-
dress RQ3 and answer that the proposed method indeed does pro-
duce a separation of voice quality in unlabelled corpora of expressive
speech at a level which closely approximates human ratings.

5. DISCUSSION AND CONCLUSION

This study presented a classification approach involving a feature set
consisting of state-of-the-art voice quality features used with fuzzy-
input fuzzy-output support vector machines (F2SVM). Speaker in-
dependent experiments on acted speech with discrete voice quali-
ties showed effective classification of lax and tense voice. Lower
classification of modal voice was observed and this can be largely
attributed to high degree of variability in modal class of samples
which were read in a neutral voice quality. A formal labelling of
the voice quality of the neutral utterances would help to reduce this
variability and would inevitably lead to better classification of the
modal class. Findings from the subjective evaluation reveal that the
clustering approach of the soft output of the F2SVM classifier was
highly effective in separating lax, modal and tense voice in unla-
belled corpora of expressive speech, with potential for improvement
for female voices. This makes the proposed approach an extremely
useful method for handling this kind of data and has important im-
plications for expressive speech synthesis, as well as other speech
technology applications. It’s potential for expressive speech synthe-
sis, in particular, is one which we intend to exploit in future work.
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