Membrane Proteins - General Overview
Membranes are one of the most fascinating structures in biological cells.
They fulfill two main functions:
- Separation of the cell from the surrounding environment and division of the (eukaryotic) cell into compartments.
- Communication and interaction with the environment or different compartments.
At first view this is seemingly contradictory, but the two functions are closely related to the structural and chemical composition of biological membranes: The first is a property of the membrane lipids, which build up a barrier for water and water soluble solvents such as salts and sugars. The second function is primarily made possible by the presence of proteins.
The membrane proteins mediate the communication with the outer world of the cell, which involves an extremely broad spectrum of biological functions:
- They control nutrition uptake and secretion of chemical compounds (transport)
- They act as sensors for chemical and physical effects and are transducing outer signals into the cell (signal transduction)
- They are essential for energy conversion
- They mediate cell mobility, cell adhesion and other structural functions
- They are important for some enzymatic activities
Considering the wide biological functions of membrane protein, it is not surprising that about 30% of all encoded proteins are membrane spanning peptides (Venter et al, 2001, Engelmann et al, 2001). Especially in higher, multicellular organisms they fulfill indispensable functions to mediate the communications between the different cells, tissues, organs and organisms.
Membrane Proteins - Implications for medical research
The important function of membrane-proteins in the organization of complex structures predestinates them to important targets for medical drugs against various diseases. It has been estimated that 50% of all drug-targets are so called G-protein coupled receptors (GPCR) (Howard et al., 2001). These membrane-proteins translates an outer signal into an internal signal and amplifies it: Upon binding of a ligand at the receptor, the structure of the GPCR-protein is changed slightly and allows the activation of internal messenger cascades. These second messengers alters finally the behavior and/or structure of the cell. Despite that all of these receptors have a general architecture of seven trans-membrane alpha-helices, they recognize a wide variety of different ligands, including hormones, peptides, ions, amino-acids and photons.