
 

Entanglement
Quantum Resource Theories

Motivation Entanglement is useful

Quantum teleportation
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Show that m can be recovered
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by Bell basis measurement after
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Morale Entanglement enables
tasks not possible
without it It gets used
up in the process

Entanglement is a resource



Quantum Resource Theories
QRTs

Definition
A QRT is a tuple R 0 F
where
O free operations
F free States
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Free operations
Free operations postulate FOP
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Det one way LOCC On cocc

local operations
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communication
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create by LOCC

1 sample pi locally
2 broadcast
3 prepare at each site K

Def separable operations Osep
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Maximal set of free operations Omax

Def non entangling operations One

One 2 16 EFs oeFs
OSEP One problem set

One Omax for general QRTs
Def completely resource non

generating ops Oe max
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Resource monotones measures

idea quantify resource by
non negative fat f S Rf

monotonicity
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desiderata properties
computability
convexity
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Examples for QRT of entanglem

Pure states
Entropy of entanglement
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Schmidt decomposition
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Schmidt rank or
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Exercises - Entanglement and Quantum Resource Theories

Problem 1: Bell states and maximal entanglement

The four Bell states form a basis for the Hilbert space of two qubits. In this exercise we will
further explore why they are called ‘maximally entangled’.

(i) Write down the four Bell states and consider local unitary operations of the form UAB =

UA → UB . Can any Bell state converted into any other by such a local unitary operation?
If no, provide a proof. If yes, specify a su!cient set of local unitary operations.

(ii) Can a product state |ω↑AB = |a↑ → |b↑ be obtained from a Bell state by a local unitary
operation?

(iii) It is important to know that quantum teleportation does not permit faster than light
communication. Proof this by showing that in the teleportation protocol introduced in
the lecture, Bob does not obtain any information about Alice’ input state |ω↑ until she
has communicated her measurement result. Why is your result is not in conflict with the
functioning of quantum teleportation?

(iv) Show that Alice can use an extension of the teleportation protocol from the lecture to
create any shared state |ε↑AB between her laboratory and Bob’s by using one shared Bell
state |ϑ+↑.
Hint: Consider Alice and Bob to start with the initial state |ε↑12 → |ϑ+↑AB where Alice
controls laboratories 1, 2, and A; Bob controls laboratory B. As in the original teleportation
protocol encountered in the lecture, Alice and Bob may only perform measurements and
unitary operations on systems in their control, as well as classical communication.

(v) We have called the Bell states ‘maximally entangled’. How is this terminology justified for
pure two-qubit states in light of what we have found out in this exercise?

Problem 2: QRTs from basic postulates

In the lecture, we have stated the free operations postulate (FOP) as a postulate. In this exercise,
we will show that it can in fact be derived from other basic postulates for quantum resource
theories (QRTs), namely

(free preparation of free states) The set of free states F is in one-to-one correspondence
with the set of free preparation maps !ω : C ↓ H (↔ H).
In other words, ϑ is a free state if and only if O includes a free map !ω : C ↓ H with
!(1) = ϑ.

(free identity operations) For any permitted Hilbert space H, the associated identity op-
eration is a free operation: idH ↗ O,

(free concatenation of free operations) !,!→ ↗ O ↘ !
→ ≃ ! ↗ O, for all ! and !

→ for
which the output Hilbert space of ! matches the input Hilbert space of !→ and where ≃
stands for successive application.

(i) Write down the FOP. (ii) Then, derive it from the above.

1

https://www.tcd.ie/physics/research/groups/quantum-information-theory-group/


Problem 3: Separable states and free operations

For an N -partite Hilbert space, recall the set of separable states Fs and the set of separable
operations (Osep).

(i) Consider Oc→max induced by Fs. Show that Osep → Oc→max – i.e., there is no operation
in Osep which is not also in Oc→max.
Remark: In fact, Osep = Oc→max but you don’t need to prove the other direction – i.e.,
that there is no operation in Oc→max which is not also in Osep.

(ii) Consider the case of bipartite separable states F2s. Show that any bipartite separable state
can be written as a classical mixture of pure, orthonormal, bipartite product states (i.e.,
states of the form |a↑A |b↑B). Is any classical mixture of product states a separable state?
(Remark: since this technically includes mixtures with a single component, note that the
only separable pure states are product states).

(iii) Consider again F2s. The set Omax induced by F2s is the set of non-entangling operations
One. The swap operation SWAP is implicitly defined by SWAP (|a↑A |b↑B) = |b↑A |a↑B
for any pair of systems and states. Recalling that Oc→max = Osep, Show that for F2s,
Oc→max ⊋ Omax by proofing that SWAP ↓ One and SWAP /↓ Osep.

Problem 4: Properties of entanglement monotones

In this exercise we will examine some of properties and desiderata for entanglement monotones
more closely by focusing on specific examples.

(i) Show that the Schmidt rank is an entanglement monotone for pure states. How can
we turn the Schmidt rank from a monotone into a measure (i.e., by making it weakly
discriminant)? Is this derived measure faithful?

(ii) We can formally construct a resource monotone from a distance function d by defining:

Ed(ω) := inf
ω↑F

d(ω,ε)

Note that any Ed defined in this way is faithful.

Show that if d obeys a data processing inequality d(ω,ϑ) ↔ d(!(ω),!(ϑ)) for all quantum
channels ! (not just free ones) then Ed is monotonic under all non-entangling operations.
Remark: Recall the requirements that a distance function has to fulfill:

• d(x, y) ↔ 0 (non-negativity)

• d(x, y) = 0 ↗ x = y (identity of indiscernibles)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ↘ d(x, y) + d(y, z) (triangle inequality)

(iii) Recall the relative entropy R(ω||ϑ) := ≃S(ω)≃ Tr[ω log ϑ]. R is not a distance on state
space because it is neither symmetric R(ω||ϑ) ⇐= R(ϑ||ω) nor does it satisfy the triangle
inequality. This is equally true of its classical variant (called Kullback-Leibler divergence).

a) Show that R is not symmetric by finding two states, ω and ϑ as an example.

Regardless of this, R can still be used as an entanglement monotone ER using the same
construction as for Ed as above.

b) The quantum relative entropy obeys joint convexity in its arguments, i.e., for p+q = 1

and states ω,ϑ,ϖ,ϱ::

R(pω+ qϑ||pϖ+ qϱ) ↘ pR(ω||ϖ) + qR(ϑ||ϱ)

Use this to show that ER is convex.
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