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Exercises - Entanglement and Quantum Resource Theories

Problem 1: Bell states and maximal entanglement

The four Bell states form a basis for the Hilbert space of two qubits. In this exercise we will
further explore why they are called ‘maximally entangled’.

(i) Write down the four Bell states and consider local unitary operations of the form Uap =
Ua ® Up. Can any Bell state converted into any other by such a local unitary operation?
If no, provide a proof. If yes, specify a sufficient set of local unitary operations.

(i) Can a product state |¢) , 5 = |a) ® |b) be obtained from a Bell state by a local unitary
operation?

(iii) It is important to know that quantum teleportation does not permit faster than light
communication. Proof this by showing that in the teleportation protocol introduced in
the lecture, Bob does not obtain any information about Alice’ input state [¢) until she
has communicated her measurement result. Why is your result is not in conflict with the
functioning of quantum teleportation?

(iv) Show that Alice can use an extension of the teleportation protocol from the lecture to

create any shared state |o) , 5 between her laboratory and Bob's by using one shared Bell
state |¢T).
Hint: Consider Alice and Bob to start with the initial state o), ® |¢T) , 5 where Alice
controls laboratories 1, 2, and A; Bob controls laboratory B. As in the original teleportation
protocol encountered in the lecture, Alice and Bob may only perform measurements and
unitary operations on systems in their control, as well as classical communication.

(v) We have called the Bell states ‘maximally entangled’. How is this terminology justified for
pure two-qubit states in light of what we have found out in this exercise?

Problem 2: QRTs from basic postulates

In the lecture, we have stated the free operations postulate (FOP) as a postulate. In this exercise,
we will show that it can in fact be derived from other basic postulates for quantum resource
theories (QRTs), namely

ree preparation of Iree states e set of free states IS In one-to-one correspondence
fi ti f fi tat Th f fi Fisi d
with the set of free preparation maps Q4 : C — H (V H).
In other words, ¢ is a free state if and only if O includes a free map €3 : C — H with

Q1) = ¢.

(free identity operations) For any permitted Hilbert space H, the associated identity op-
eration is a free operation: idy € O,

(free concatenation of free operations) 2,9 € O = Q' o Q € O, for all 2 and Q' for
which the output Hilbert space of € matches the input Hilbert space of ' and where o
stands for successive application.

(i) Write down the FOP. (ii) Then, derive it from the above.


https://www.tcd.ie/physics/research/groups/quantum-information-theory-group/

Problem 3: Separable states and free operations

For an N-partite Hilbert space, recall the set of separable states F, and the set of separable
operations (Ogep).

(i)

(i)

(iii)

Consider O¢_ynq induced by Fs. Show that Ogep C Oc_inas — i.€., there is no operation
in Ogep Which is not also in O¢_ a0

Remark: In fact, Ogep = Oc_maa but you don't need to prove the other direction - i.e.,
that there is no operation in O._mqz Which is not also in Oep.

Consider the case of bipartite separable states Fo5. Show that any bipartite separable state
can be written as a classical mixture of pure, orthonormal, bipartite product states (i.e.,
states of the form |a) , |b) 5). Is any classical mixture of product states a separable state?
(Remark: since this technically includes mixtures with a single component, note that the
only separable pure states are product states).

Consider again Fas. The set O,,4, induced by Fs; is the set of non-entangling operations
Ohpe. The swap operation SWAP is implicitly defined by SWAP(|a) 4 |b)g) = |b) 4 ]a) 5
for any pair of systems and states. Recalling that Oc_maz = Ogep, Show that for Foy,
Oc—maz G Omaz by proofing that SWAP € O, and SWAP ¢ Ogp.

Problem 4: Properties of entanglement monotones

In this exercise we will examine some of properties and desiderata for entanglement monotones
more closely by focusing on specific examples.

(i)

(i)

(i)

Show that the Schmidt rank is an entanglement monotone for pure states. How can
we turn the Schmidt rank from a monotone into a measure (i.e., by making it weakly
discriminant)? Is this derived measure faithful?

We can formally construct a resource monotone from a distance function d by defining:

Ea(p) = inf d(p, ¢)

Note that any E; defined in this way is faithful.
Show that if d obeys a data processing inequality d(p, o) > d(A(p), A(o)) for all quantum
channels A (not just free ones) then Eq4 is monotonic under all non-entangling operations.
Remark: Recall the requirements that a distance function has to fulfill:

e d(z,y) >0 (non-negativity)

e d(z,y) =0« x =y (identity of indiscernibles)

o d(z,y) =d(y,x) (symmetry)

o d(z,z) <d(z,y)+d(y,z) (triangle inequality)
Recall the relative entropy R(p||c) := —S(p) — Tr[plogo]. R is not a distance on state

space because it is neither symmetric R(p||c) # R(o||p) nor does it satisfy the triangle
inequality. This is equally true of its classical variant (called Kullback-Leibler divergence).

a) Show that R is not symmetric by finding two states, p and o as an example.

Regardless of this, R can still be used as an entanglement monotone Eg using the same
construction as for E; as above.

b) The quantum relative entropy obeys joint convexity in its arguments, i.e., for p+¢ =1
and states p, 0, «, B

R(pp + qollpa + ¢B) < pR(pl|a) + qR(0]|B)

Use this to show that Er is convex.



