Foundations	www.tzd.ie/physics/gucrtwtech
Why posabil	
\cup , ,	Statistics underpins all science
,	mechanics is interently probabilistic
	nathematics & philosophy
[Lectures bas	ed on textbodie by van Kompen & Jaynes?
	probabilities mean?
~	- P(heads) is the frection of observed
, ,	many identical trials
* Bayesian	- P(heads) quantities the degree of belief
	in obsering heads in each trial
	A 1
Hausibility.	rs. declution
	,
MOPOSItions	e.g. A = it is raining
	B= it is cloudy
	C = I am hungsey
Logical produ	ect: AB = A AND B are true les think about whose variousles
Logical Suc	n: A+1S= A OK B is true L
	: A = A is NOT thee
Luplication:	$A \Rightarrow B (A \text{ implies } B)$

What about the converse: B => A?
B does not imply A but it does make it more plausible.
We want to quantify placesibility, conditional on some info
AlB = A giver/ouditioned on B
AIBC etc.
Cox's theorem (see Jaynes' textbook)
1. Represent plausibility by real numbers (increasing, continuon)
P(AIC) > P(BIC) => A more placesible than B given C
2. Consistercy with common sase, e.g.
P(AIC') > P(AIC) => P(AIC') < P(AIC)
P(B AC') = P(B AC) P(AB C') > P(AB C)
3. Mathematical self-consistency
From (1-3) we can obtain the following rules
* P(ABIC) = P(AIBC) P(BIC) = P(BIAC) P(AIC)
* P(AIB) + P(AIB) = 1
* If C=B => A then P(A BC)=1
* P(A+BIC) = P(AIC) + P(BIC) - P(ABIC)
* If \{\A_1,, \And \see mutually exclusive & exhaustive,
i.e. P(A:A; 1B) = P(A:1B) Si; & & P(A:1B) = 1,
and if B does not favour one Ai over any other,
then P(AilB) = to (principle of inelifformer)

Simple example
B = an urn outhers 2 red(r) balls (8 green 6) one
What is the prob. that we drawe red of? background
Lake the bells: 1,2 are red, 3-10 are green inlifterent
A: = the ith ball is drawn
P(A; 13) = 10
$P(R B) = P(A_1 + A_2 B)$
= P(A, 1B) + P(A21B) - P(A, A21B)
$= \frac{2}{10}$
more generally if B= M red balls, N-M green
more generally, if $B = M \text{ red balls} N - M \text{ green}$ $P(R B) = P(A_1 + A_2 + + A_m B) = \sum_{i=1}^{m} P(A_i B) = M$
(=)
Intersting example (Litt 2024)
Suppose an un has M red balls, N-M green,
N=100 balls total. M is chosen by pickery a
number from 0 -> 100 out of a hat. You choose a
ball and it's red (R,). Is the next ball more
likely to be red (Re) or green?
N N
$P(R_2 R_1) = \sum_{m=0}^{N} P(R_2, M=m R_1)$
$= \sum_{M=0}^{N} P(R_2 M=M, R_1) P(M=M R_1)$

```
P(M=M|R_1) = ?
 P(M=M,R_1) = P(R_1|M=M) P(M=M) =
                                                     P(M=m/R)P(R)
 \Rightarrow P(M=m|R_i) = P(R_i|M=m)P(M=m)
                                                     Bayes' rale
                      P(Ri)
P(R) = \sum_{m=0}^{N} P(R, | M=m) P(M=m)
 P(R, | M=m) = \frac{M}{N}, P(M=m) = \frac{1}{101} = \frac{1}{N+1}
\Rightarrow P(R_1) = \frac{1}{N(N+1)} \sum_{m=0}^{N} M
= \frac{1}{2}
= \frac{1}{2}
M = \frac{1}{2} = \frac{3}{3}
[makes some if youtlink \square m= N^2 - \frac{1}{2}[N^2 - N]
about it - principle of indifferce ] = ±(N2+N)=±N(N+D)
   P(M=M|R_i) = P(R_i|M=M)P(M=M)
                      P(Ri)
                                       (length biased sampling)
            = \frac{1}{2}N(N+1)
                                          M \geq 1
  P(R_2 | M=M, R_1) = \frac{M-1}{N-1}
                                         M = \bigcirc
\Rightarrow P(R_{2}|R_{1}) = \sum_{m=1}^{N} \frac{m-1}{N-1} \cdot \frac{m}{\pm N(N+1)} = \frac{2}{3}
\sum_{m=0}^{N} m(m-1) = \pm (N-1)N(N+1)
```

Probabilities & random veriables Random variable X specified by: i) range of values, e.g. discrete X=\(\frac{2}{2}\times_{1}, \times_{2}, \times_{3}\times_{1}\)
Random variable X specified by: i) range of values, e.g. discrete X=\(\xi\) \(\infty\) \(\infty\).
Random variable X specified by: i) range of values, e.g. discrete X=\(\xi\) \(\xi\). \(\xi\). \(\xi\).
i) range of values, e.g. discrete X=Ex,, x,, x, }
or continuous $X \in [a, b]$
ii) probability distribution
$P(X = x) = \rho_x$
$P(X \in [x, x+dx]) = p(x)dx$
normalised $\leq p_{x} = 1$ or $\int dx p(x) = 1$
positive P(X) > 0
Expectations:
E[X] = E[X = x] x the "centre of mags"
$E[f(x)] = \leq P(x=x) f(x)$
e.g. mounts E[X ^m]
Variance $Var[X] = E[(X - E[X])^2]$
= E[X2] - E[X]2 (exercise)
Characteristic function: (very useful for proving various results)
$G(u) = E[e^{iuX}] = \sum_{x} P(x=x) e^{iux}$
$G_{X}(0) = \underset{X}{\leq} P(X=x) = \underset{X}{=} 1$, $P(X=x) = \underset{X}{\int} u e^{-iux} G_{X}(u)$

Suns of inclot random variables $S = \underbrace{\sum_{n=1}^{N} \chi_{n}}$ $G_{S}(u) = \underbrace{F[e^{iu} \underbrace{\sum_{n=1}^{N} \chi_{n}}]}_{N} = \underbrace{F[e^$ $K_s(u) = \underset{\sim}{\leq} ln G_{x_n}(u) = \underset{\sim}{\leq} K_{x_n}(u)$ $\Rightarrow E[S] = \underbrace{\lesssim}_{(-i)} K_{x_n}(0) = \underbrace{\lesssim}_{(-i)} E[x_n]$ $Var[S] = \underbrace{\lesssim}_{(-i)} K_{x_n}(0) = \underbrace{\lesssim}_{(-i)} Var[x_n]$ Means & variances of independent random variables are additive! If Exn3 are i.i.d. then E[S]=NEx], Vor[S]=NVor[A] Bernouilli & binomial distributions Bernauilli dist": X=20,13, P(X=1)=9 [e.g. biased can flip, $9=\frac{2}{3}$] P(X)=9 F(X)=9 F(X)=9 F(X)=9 $E[X] = 9, E[X^m] = 9$ | -2Bironial dist": repeat N times & sum: S= & Xn 01001 (5) outcomes ecech 10100 (2) with prob. 92(1-9)3 S = 2, N = 5,

Central limit theorem

$$E[x] = \mu, \quad \forall \alpha [x] = \delta^{2}$$

$$\tilde{S} = \sqrt{N} \sum_{n=1}^{\infty} (x_{n} - \mu)$$

$$G_{\tilde{S}}(u) = E[e^{iu\tilde{S}}] = [e^{iu(x-\mu)/N}]^{N}$$

$$= [e^{-iu\mu/N} G_{X}(u/N)]^{N}$$

$$G_{X}(u) = e^{K_{X}(u)} = e^{iu\mu} - \frac{1}{2}u^{2}\sigma^{2} + \cdots$$

$$\Rightarrow G_{\tilde{S}}(u) = [e^{-iu\mu/N} e^{iu\mu/N} - \frac{1}{2}u^{2}\sigma^{2}N + O(N^{3}4)]^{N}$$

$$\approx [1 - \frac{1}{2}u^{2}\sigma^{2}]^{N} \quad (N >> 1)$$

$$\Rightarrow e^{-\frac{1}{2}u^{2}\sigma^{2}}$$

$$\Rightarrow P(\tilde{S} = \tilde{S}) = \int du e^{-\frac{1}{2}u^2\sigma^2} e^{-iu\tilde{S}} = e^{-\frac{\tilde{S}^2}{2}\sigma^2} Gaussin$$

$$= e^{-\frac{\tilde{S}^2}{2}\sigma^2} Gaussin$$

lu P(S=s) = NluN - lus! - (N-s) lu(N-s) + sln x - sln N + (N-s)ln(1-x) = NlnN - lus! - (N-S)lnN + sln Y - s ln N + (N-s) (- 5/n) 2 slnx - lns! - x $\Rightarrow P(S=S) = \frac{q^S}{s!} = \frac{e^{-q}}{Poisson}$ distribution $G_S(u) = E[e^{iuS}] = \sum_{s=0}^{\infty} e^{iuS} x^s e^{-x^s}$ $= e^{-x} \leq \frac{s!}{s!}$ $= e^{-x} \leq \frac{(xe^{iu})^{s}}{s!}$ $= e^{-x} e^{xe^{iu}}$ $= e^{-x} e^{xe^{iu}}$ = exp[x(eiu-1)] or $Ks(u) = \varphi(e^{iu}-1)$ $\Rightarrow E[S] = -iK_s(0) = 4$ $Vor[S] = -K_s'(0) = \alpha = E[S]$ all cumulants than = E[S] = ~! Poissan statisties, e.g. photons from a laser.