


































































Foundations www.ted.ie physicsquatuutesh

Why probability theory
probability statistics underpins all science

quantum mechanics is inherently probabilistic

fascinating mathematics philosophy

Lectures based on textbooks by van Kampen Jaynes

What do probabilities mean

frequentist PCheads is the fraction of observed
heads in many identical trials
Bayesian PCheads quantifies the degree of belief
we have in observing heads in each trial

Plausibility vs deduction

Propositions e.g A it is raining

B it is cloudy
C I am hungry

Logical product AB A AND B are true fes
thinnaba

Logical sum ATB A OR B is true
binaryvariables

Negation A A is NOT the

Implication A B A implies B





































































What about the converse B A

B does not imply A but it does make it more plausible

We want to quantify plausibility conditional on some info

A B A giventonditioned on B
A BC etc

Cox's theorem see Jaynes textbook

1 Represent plausibility by real numbers incrasing continuous

P AIC PCBIC A more plausible than Bgiven C

2 Consistency with common sase e g
PCAIC PCAIC P EIC PCA C
PCB AC PCB AC PLABIC PLABIC

3 Mathematical self consistency
From 1 3 we can obtain the following rules

PLABIC PCA IBC P BIC PCB AC PCAIC

PCAIB PCA B 1

If C B A then PCAIBC 1

PLABIC PLAIC PCB C PLABIC
If A An are mutually exclusive exhaustive

i e PCAA B PCA B Sj PCA B 1
and if B does not favour one Ai over any other

then PCA IB principle of indifference





































































Simple example

B an urn contains 2 red E balls 8 green ones

What is the prob that we drawa red one background
Label the balls 1,2 are red 3 10 are green indiffert

Ai the ith ball is drawn
PCA B

PCR B PCA A IB
PCA IB PCAIB PAEATS

more generally if B M red balls N M green

PCR IB PCA Art Am B PCA B

Interesting example Litt 2024

Suppose an un has M red balls N Mgreen
N 100 balls total M is chosen

Éa

number from 0 100 out of a hat You choose a

ball and it's red R Is the next ball more

likely to be red Ra or
green

P RalR PCR M m R

PCR IM M R PCM m R





































































P M mIR
P M m R PCR M m P M m P M m B PCR

P M mIR PCR M m P M m
Bayes rule

PCR
PCR PCR.IM P M m

PCR Mm P M M

Part m
fff ff

M I 2 5

makes sense if you think E M N LINEN
about it principleof indifference N N INCN D

P M mIR PCR M m P M m

PCR

4m
length biased sampling

PCRa M m R m 1

0 M O

PCR IRD IE
MG 1 IN DNAAD





































































Applications

Probabilities random variables

Random variable X specified by
i range of values e.g discrete X X2

or continuous E a b

ii probability distribution

P X x pic

P e Cascade pedde
naked ftp.c 1 or fdicpd 1

positive PCD 0

Expectations
E X Ʃ P X x x the centre of mass

E FCA ƩP X x f x

e g moments E Xm
variance Vara E X EX

E X E X exercise

Characteristic function veryuseful for proving various results

Gfa Elein P X x e

Gx o P X x 1 PG x fly e G a





































































Gx a
a

P X x ix iE X

Cis mGx u us E Xm
aka moment generating function Glu EAT

Cumulantgenerating function GF Kx a In G a

45 1 Kxas no
mᵗʰ cumulant km

E X 142 Var x Exercise

or Kx a ME 94m
Multi variate distributions

Two random variables X X2

P X x X x2 P X x Xa a P Xa xa

Independence means that

P X x Xa Xa P X c xa

Park Xa xa PEX P Xa Xa

CorrelationKovariance

CorCX Xa E XXa EXTECK

if independent E X X2 PCX x.PE Dx.Xa

ECXiTECXa
Cov X X2 0

BUT Cov X X2 0 does not imply independence





































































Sums of indpt random variables
S Eix
Gscu Efe É EFIIe.ua IE e

IGxn u

Ks a Ʃ In Gxn u Ʃ Kxn a

E S ti Kx EX

Var S fit Kilco Ʃ Var X

Means variances of independent random variables are additive

If Xn are i i d then ECS NEG Var S NVark
etc

Bernoulli binomial distributions

Bernouilli dist
X 0 1 P X 1 q legbiased can flip
PA EX q EAT q

112 Var x 94 q
1 G a It q e 1

Binomial dist repeat N times sum S Xn

eg 5 2 N S
5 p





































































PCS s
Ns qˢ 1 q

s

2 0 6

E S Nq n 20 N 40

Var S Nq 1 2 ECS

VarF fECS

Central limit theorem

ECX n Var x 02

5 É Xun
G a E eius eiuanw.TN

e
into GCN

Gx a e
ka eian 4202

142

Gs a EMAN einen 142 OCYn IN
I I N 1

Es e
4202

P 5 5 fd e E












Consider sample mean 8 E Xn
I

PCSA x α exp f x up

Holds for any sum of i i d random variables so

long as cumulants km as

As N as the sample mean E Xn
converges to the expectation value EAT with

probability 1 frequentist interp
Fluctuations of the sample mean are O

i e E EI EX EG
Var E EG Varf

Poisson distribution
Consider binomial distribution where trials N as and
success prob q 0 sit Nq α const

0 19 11 11 111 911 111ft 111 if If eg photodetector
probability q in

P S s
Ng qˢ 1 q

s
each time step at

N

s N s
8 8

N s

Stirling's approx Lun menu for not



In P S s NAN lust N s lu N s

send sln N N Den 1 5
NluN lus 5 luN send
Slu N N s

slur lus I

P S s é Poisson distribution

Gs a Ele's E e é

e E.GE
e e

rein

exp ocein 1

or Ks u a e 1

E S iks.co α

Var S K o α ECS
all cumulants km ECS α

Poisson statistics eg photons from a laser


