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Abstract

Nonequilibrium condensates in microcavities have been extensively analysed
over the past decades. Like equilibrium condensates, they are characterised by
a macroscopic population of the ground state, however, the system is subjected
to gain and loss through the finite lifetime of the microcavity. In these systems,
a Bose gas is an open system in which heat and particles are continually ex-
changed with reservoirs. Based on the collection of knowledge of their kinetics
provided by simulations and by experimental works, we show that these gases
act as thermal machines whose output power is coherent emission of light. As in
the case of a laser, these thermal machines are constrained by the second law of
thermodynamics and operate with efficiency bounded by the Carnot limit.

We considered in depth condensation of both exciton-polaritons and photons.
Starting with polaritons, we constructed a few-level model that captures the
main processes involved in the buildup of a ground state population. The model
consists of a three-level system interacting with a field and connected to a hot
and a cold thermal reservoir, that represents a non-resonant pump and the lattice
phonons. This subsystem can drive a condensate, through polariton-polariton
scattering, which produces work in the form of coherent light emission from the
microcavity. We obtain a phase diagram as a function of the temperatures of the
two baths and analyse the phase transition.

To extend the analysis to a photon gas we use a kinetic approach to show that
condensation is also restricted by the second law of thermodynamics and that,
with a resonant pump, it can be mapped to a three-level heat engine model. We
continue the analysis by exploring the effects of altering the pump on the steady
state of the system. We show that condensation can be achieved using sunlight
as a source and obtain its efficiency.

Our results elucidate a new link between nonequilibrium condensation and
lasers. Beyond that, we also discuss the connection of these phenomena with
synchronisation.
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Chapter 1

Introduction

Bose-Einstein condensates (BECs) are an ordered state of matter in which quan-

tum properties manifest on a macroscopic scale. Originally conceived as an equi-

librium phenomenon, condensates form when a gas of bosons is cooled to low

temperatures. As the thermal energy decreases, the de Broglie wavelength of

the particles becomes comparable to the average space between them, leading to

an overlap of wave functions. This results in symmetry breaking and a phase

transition to a collective state.

Nonequilibrium condensates extend this concept to systems that undergo gain

and loss. They are quantum states that exhibit macroscopic coherence and collec-

tive behaviour, but operate away from thermodynamic equilibrium. Examples of

Bose gases in which nonequilibrium condensates have been demonstrated include

those of exciton-polaritons in inorganic [1] and organic semiconductors [2], pho-

tons in semiconductors [3] and in dye-filled cavities [4, 5], plasmon-polaritons [6],

and magnons [7].

This out-of-equilibrium phenomenon represents a rich intersection between

quantum optics and condensed matter physics, leading to applications in quantum

optoelectronic devices like lasers, switches, and transistors. When implemented

in optical microcavities, as with photons and polaritons, the low mass of the

confined light enables condensation to occur at room temperature [8]. This, com-
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INTRODUCTION 2

bined with the development of electronically injected condensates [9, 10], offers

considerable experimental advantages, increasing the practicality of implementing

these condensates into controllable energy-efficient small-scale devices [11, 12].

Additionally, nonequilibrium BECs are pivotal in fundamental research on

collective states and pattern formation, including synchronisation, superfluid-

ity, and vortices. For example, a lattice of polariton condensates can be used

to simulate the XY Hamiltonian and, by analogy, it reproduces the behaviour

of other systems such as unconventional superfluids, spin liquids, the Berezin-

skii–Kosterlitz–Thouless phase transition, and classical magnetism [13].

Nonequilibrium condensates represent an intermediate state between a con-

ventional laser and an equilibrium Bose-Einstein condensate. As BECs, they

exhibit a macroscopic occupation on the ground state, while, like lasers, they

require a continuous external pump, and operate away from thermal equilibrium,

to generate coherent emission. The extent to which the steady state particle

distribution of a condensate resembles equilibrium depends on the relative time

scales of loss and thermalisation. For example, photons and magnons can quickly

reach a quasi-equilibrium state, while in exciton-polariton gases, the thermali-

sation time is usually similar to the lifetime of the particles in the cavity, and

so an equilibrium distribution is not achieved. However, regardless of the parti-

cle distribution, there is, in any case, a continuous flow of energy and particles,

maintaining a steady state condition where the losses are balanced by gain from

an external pump.

The dynamics and steady states of these condensates have been studied with

different models, using kinetic equations and field-theoretic approaches, among

other techniques. In this thesis, we aim to use thermodynamics to derive a gen-

eral theory of nonequilibrium condensation in Bose gases. We focus on exciton-

polaritons and photons and argue that, from a fundamental perspective, the

emission of coherent light is the output power of a thermal machine. In this way,

the constraint of positive entropy production imposed by the second law of ther-

modynamics provides a general way of identifying requirements for condensation.

The next two chapters will serve as an introduction to our main results. In

chapter 2 we present a brief summary of important concepts used later in the
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thesis, and in chapter 3 we present a theory of microcavity polaritons and a

kinetic approach to condensation. By analysing the role of phonon-polariton and

polariton-polariton interactions separately, we lay the groundwork used in the

thermodynamic analysis presented in the following chapter.

In chapter 4 we analyse condensation using the framework of quantum ther-

modynamics. Based on the collection of knowledge about polariton kinetics pro-

vided by kinetic simulations and by experimental works, we construct a few-level

model that captures the main processes involved in the buildup of a ground-state

population of polaritons. The model consists of a three-level system interacting

with a classical field (which is the condensate) and connected to a hot and a cold

thermal reservoir, that represent a pump and the lattice phonons. The three-level

system is similar to a laser model [14], whose connection to thermal machines has

been extensively studied [14–19]. We analyse condensation using our model and

obtain a phase diagram as a function of the temperatures of the two baths and

the chemical potential.

In chapter 5 we extend our approach to photon condensation. We use a ki-

netic theory to analyse entropy generation and its restrictions on condensation.

Our results consist of a new approach to obtaining restriction of condensation

that rely on thermodynamics. It shows that although the system can reach ther-

malisation, its nonequilibrium nature still plays an important role in defining the

phase boundary to condensation. We start with the analysis of a photon gas

pumped at the dye frequency and extend the analysis to show that condensation

could be achieved from sunlight harvesting.

In chapter 6, we continue the analysis of nonequilibrium condensation by

discussing the connections to laser and synchronisation phenomena. We use a

mean-field approach to analyse the threshold of a laser, which is constrained

by the emergency of a limit cycle and happens concurrently with the field-spin

synchronisation. In chapter 7, we present final remarks and conclude the thesis.





Chapter 2

Background

IN WHICH WE SET THE GROUNDWORK FOR THE REST OF THE THESIS

Throughout this thesis, we will approach condensation in nonequilibrium quan-

tum gases from the perspective of thermodynamics. Our approach can give a new

interpretation of results already existent in the literature and add original insights

into how the restrictions imposed by the laws of thermodynamics reflect in the

condensation constraints. Therefore, the comprehension of both nonequilibrium

condensation and quantum thermodynamics is indispensable.

In this chapter, we review concepts of Bose-Einstein condensation and the

methods that will be used later on in the thesis to describe driven-dissipative

condensates. Next, we introduce definitions and concepts regarding thermody-

namics in the quantum regime and present how they apply in a simple model of

a quantum thermal machine.

2.1 Bose-Einstein condensates

Bose-Einstein condensates (BECs) are an ordered state of matter in which micro-

scopic quantum phenomena become visible macroscopically. They are achieved

by identical bosons with low thermal energy when the inter-particle spacing is

5



2.1. BOSE-EINSTEIN CONDENSATES 6

small compared to the de Broglie wavelength. As a result, the waves overlap,

acquiring a single collective phase.

The existence of BECs is explained by the statistical properties of quantum

identical particles. The occupation distribution of states k in a Bose gas with

inverse temperature β and chemical potential µ is

nk =
1

eβ(ϵk−µ) − 1
, (2.1)

where we have taken the energy of the ground state to be zero. The total number

of particles is given by the sum
∑

k nk. Hence, if the occupation shows little

variation with k, in the thermodynamic limit the sum can be replaced by an

integral, and the density of the gas is

ρ =
1

(2π)3

∫
dk

eβ(ϵk−µ) − 1
. (2.2)

However, because µ < 0 the right-hand side of Eq. (2.2) can have an upper bound

ρc. For densities above this critical value the assumption of smooth variation of

nk is not valid, meaning the gas must have at least one state with a macroscopic

occupation. In principle, more than one state could play the role of keeping

these excess particles. But, even if the inter-particle coupling is weak, it affects

the stability of the distribution making the configuration with a macroscopic

occupation of the ground state the less energetic [20].

A critical temperature of condensation is obtained defining the phase transi-

tion as the point at which µ = 0 [21]. In a three-dimensional system

Tc =

(
2πℏ2

mkb

)( ρ

2.612

)2/3
. (2.3)

In two dimensions, the improper integral in Eq. (2.2) is not bounded. Therefore,

condensation can only happen if the limits of integration are finite. In other

words, condensation is restricted to finite spaces in 2D.

The existence of a macroscopic occupation of a single-particle state is what

characterises condensation as a new state of matter. Nevertheless, it must always

be accompanied by two other essential properties: gauge symmetry breaking
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and coherence. The first implies that the macroscopic state has a well-defined

phase. This means that the most appropriate order parameter for the phase

transition is the average of the annihilation operator rather than the number of

particles in the ground state. The second implies that the phase must be coherent

over a long time and distances. For a condensate of photons or polaritons, the

coherence can be measured by the first and second-order correlation functions of

the electromagnetic field [21]

g1(r, r
′, t, t′) =

⟨E∗(r′, t′)E(r, t)⟩√
⟨E∗(r′, t′)2⟩⟨E(r, t)2⟩

(2.4)

g2(r, r
′, t, t′) =

⟨E∗(r′, t′)E∗(r, t)E(r, t)E(r′, t′)⟩
⟨E∗(r′, t′)2⟩⟨E∗(r, t)2⟩

. (2.5)

In the steady state, these quantities depend only on |r − r′| and |t − t′| and are

usually measured fixing one of the variables, i.e, taking r = r′ or t = t′. For

example, the first-order temporal correlation g1(τ) = g1(r, r, t + τ, t) is expected

to show a power law decay g1(τ) = τ−η with η = kbTm
2πρℏ2 for a two-dimensional

condensate [21]. The second-order temporal correlation g2(τ) = g2(r, r, t + τ, t)

is expected to be g2(0) = 1 for a coherent state and tends to the value expected

for a thermal state g2(τ) = 2 as the delay time increases [21].

The first observation of condensation was of Helium-4 at temperatures of ap-

proximately 2K, and was shown to be the cause of superfluidity [20]. In the

90s, condensation was achieved by a combination of cooling techniques in di-

lute atomic gases such as rubidium [22] and sodium [23]. While these examples

are an equilibrium phenomena, there are now many situations where conden-

sation occurs in the nonequilibrium steady states of driven open systems. Ex-

amples include condensates of exciton-polaritons in inorganic [1] and organic

semiconductors [2], photons in dye-filled cavities [4, 5], plasmon-polaritons [6],

and magnons [7]. These particles have a finite lifetime, and the condensate must

be maintained against losses by gain from an external pump. Some condensates,

such as those of photons and magnons, quickly reach a quasi-equilibrium state,

and so can to an extent be treated using equilibrium thermodynamics. However,
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in other systems, such as polaritons, a macroscopic occupation of the ground

state can be obtained even in cases where thermalisation is not fully achieved.

In this thesis, we aim to develop the basis of a general theory to describe

condensation in driven-dissipative condensates. However, we focus on polariton

and photon condensates achieved in optical microcavities filled with a semicon-

ductor and a dye solvent, respectively. Condensation in optical microcavities

has attracted attention over the last decades because of the high temperature

at which the photon mass enables it to occur [24]. The practical applications of

condensation in microcavity systems include quantum computing [25, 12], ana-

log simulation [13], topological states [26], and optoelectronic devices such as

novel laser sources [4], switches [27], sensors [28] and transistors [29]. Further-

more, driven-dissipative condensates have also been used as a playground for the

study of fundamental properties of collective states and pattern formation such

as synchronisation, superfluidity, and vortexes [21, 30].

2.2 Methods for non-equilibrium condensates

Driven dissipative condensates are typically obtained by cooling down a quan-

tum gas to a temperature below the threshold, and this cooling mechanism can

be described as the extraction of energy by an external reservoir. Moreover, the

out-of-equilibrium nature of these gases requires an external pump acting to com-

pensate for the finite lifetime of the particles. Both the energy extraction and the

particle flow in the steady state of the condensate are described by the frame-

work of open quantum systems, in which a system interacts with an external

environment.

In this section, we explain the methods used throughout the thesis to describe

the effects of interaction with an external environment. We do not intend to

account for all possible approaches, but just the ones relevant to comprehension

of the results in the thesis. Other methods commonly used in the literature

are non-Hermitian Hamiltonians [31], input-output theories [32], the Keldysh

formalism [33, 20], and the Gross-Pitaesvkii equation [30].
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2.2.1 The Boltzmann equation

The quantum Boltzmann equation is a Fokker-Plank-type equation that describes

the evolution of the distribution of particles of a gas in momentum space. Its

general form is
∂ni

∂t
=
∑
s

W
(s)
f→i −W

(s)
i→f , (2.6)

where W
(s)
f→i and W

(s)
i→f are the scattering rates into and out of a state i due to

a certain interaction labeled as s. If the density of particles is low, first-order

perturbation theory is valid, and the scattering rates are given by Fermi’s golden

rule

Wi→f =
2π

ℏ
∑
f

| ⟨f |Vint |i⟩ |2δ(Ef − Ei). (2.7)

The indexes f and i correspond to the final and initial state, respectively, and

Vint is the interaction Hamiltonian. The evolution can be obtained by numerical

iteration, where ni(t+ dt) = ni(t) +

(
∂ni

∂t

)
dt, and dt the time step.

The Boltzmann equation is a consequence of the H-theorem of statistical

physics and evolves the system toward equilibrium. In cases where the total

number of particles is not conserved in the system, a term for the rates of loss

and gain can be added to the equation. This approach has been used to describe

the evolution and steady-sate properties of systems such as excitons [34, 35], po-

laritons [36, 37], and photons [5]. However, it does not encompass features such as

the phases and coherences, that can be relevant depending on the analysis. Typi-

cally, the Boltzmann equation is valid as long as the interaction strengths of each

interaction considered are small in comparison to the energy scales of the system,

so that perturbation theory can be used. In addition, it relies on the mean-field

approximation over the particle number operator, n̂i ≈ ni, which requires a large

number of particles. As the system grows, individual fluctuations become less

significant, and the average field better represents the overall behaviour.
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2.2.2 Quantum master equations

The Schrodinger equation correctly describes the evolution of any physical (closed)

system; however, in many cases, a system is big, and it is impracticable to cal-

culate its dynamics. In these cases, one must resort to approximations. In the

framework of open quantum systems, we split the full system into a subsystem of

interest S and an environment E, and follow with approximations (which depend

on the particularities of each case) to describe the evolution S only. This part of

interest is an open quantum system and the equation describing its dynamics is

the so-called dynamical map [38]. A typical case is that of the systems described

in this thesis, where the dynamics of an open quantum system can be described

by a time-local master equation for its reduced density matrix. We obtain such

equations from microscopic models that consider the environment explicitly by

making the weak-coupling and Markovian approximations. They can also often

be postulated phenomenologically, based on the observation that the most gen-

eral equation of motion must be a CPTP map (complete positive trace-preserving

map) having Lindblad form [38].

In this section, we show the main steps of the microscopic derivation of the

master equation used in chapter 4 and discuss the validity of the approximations

considered. The discussion is adapted from [39], where we prove its suitability

for the calculation of heat currents in the steady states of a thermal machine by

comparing the cooling currents of a laser cooling protocol obtained with other

methods.

The equation we use is a full Bloch-Redfield equation, obtained using the

weak-coupling and Markovian approximations but without making the secular

approximation. The Redfield equation does not guarantee that the eigenvalues of

the reduced density matrix remain positive [40, 38]. For a system where there are

no degeneracies or near-degeneracies, that issue can be cured by secularization

[40, 41], which corresponds to eliminating oscillating terms in the dissipator that

average to zero over time. This leads to a Lindblad form [42, 43] with positive

rates. It is, however, a priori invalid for systems with near degeneracies.
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Consider a Hamiltonian of an open quantum system of the form

H = HS +HB +HSB (2.8)

HSB =
∑
k

gkO(bk + b†k). (2.9)

Here HS is the Hamiltonian for the system, HB for its environment, or bath,

and HSB is the system-bath coupling. We consider the common situation in

which the bath comprises a set of harmonic oscillators [38], which we index using

a quantity or quantities labeled r. Note that r denotes the full set of quantum

numbers required to label the modes. The oscillators have frequencies ωr, and

ladder operators br and b†r. The displacement of the rth bath mode is coupled to

the system operator O, with coupling strength gr. The dissipative effects of the

bath depend on its spectral density, J(ω) =
∑

r |gr|2δ(ω − ωr).

We work in the interaction picture with respect to HS +HB, so that O(t) =

eiHStOe−iHSt. Note that where necessary we will distinguish operators in the

interaction and Schrödinger pictures as, for example, O(t) and O. From the von

Neumann equation we obtain the form

dρ(t)

dt
= −i[HSB(t), ρ(0)]−

∫ t

0

dt′[HSB(t), [HSB(t
′), ρ(t′)]] (2.10)

where ρ(t) is the full density operator of the system and environment. For weak

coupling to a bath one can replace ρ(t′) ≈ ρS(t
′)⊗ ρB(t

′) on the right-hand side,

where ρS is the reduced density matrix of the system, and ρB that of the bath.

Since the bath is macroscopic it can be assumed to be unperturbed by the system,

and ρB taken to be a thermal state at inverse temperature β. For a Markovian

system one may, furthermore, approximate ρS(t
′) ≈ ρS(t). We can write the

coupling operator in the eigenbasis of HS as

O(t) =
∑
ij

ei(Ei−Ej)t⟨i|O|j⟩|i⟩⟨j| ≡
∑
ij

Ôij(t). (2.11)

Taking the trace of Equation (2.10) over the environment’s degrees-of-freedom
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we find

dρS(t)

dt
=
∑
ij

{
Aij[Ôji(t)ρS(t)O(t) +O(t)ρS(t)Ôij(t)

− ρS(t)Ôij(t)O(t)−O(t)Ôji(t)ρS(t)]

−iBij[Ôji(t)ρS(t)O(t)−O(t)ρS(t)Ôij(t)

+ ρS(t)Ôij(t)O(t)−O(t)Ôji(t)ρS(t)]
}
.

(2.12)

The quantities Aij and Bij are related to the the real-time Green’s functions

of the environment at the transition frequency νij = Ei − Ej connecting levels i

and j. The quantities Aij are associated with dissipation, and are

Aij = π{[n(νij) + 1]J(νij) + n(νji)J(νji)}. (2.13)

Here n(ν > 0) = 1/(exp(βν) − 1) is the Bose function describing the bath

occupation, and J(ν) = 0 for ν < 0. The first term in Aij corresponds to the

creation of a bath quantum as the system transitions from a state i to j with

Ei−Ej > 0, whereas the second corresponds to the absorption of a bath quantum

in the opposite case, Ei −Ej < 0. The quantities Bij are associated with energy

shifts, and are given by the principal value integral

Bij = P

∫
J(ω)

ω + (2n(ω) + 1)(Ei − Ej)

ω2 − (Ei − Ej)2
dω. (2.14)

Equation (2.12) can be used directly, but is often further approximated, lead-

ing to other forms of equation-of-motion for an open quantum system. One very

common approximation is to drop the principal value terms proportional to Bij.

Another common approximation is to secularise the equation-of-motion. This

is done by decomposing the remaining coupling operators, O(t), into the energy

eigenbasis: O(t) =
∑

kl Ôkl(t). Every term in Equation (2.12) then involves a

product of operators corresponding to two transitions, one involving the pair of

levels i and j, and one involving the pair k, l. If the levels are non-degenerate these

products of operators are, in general, time-dependent in the interaction picture,

and average to zero. The exception is where a transition in one direction is paired
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with the same transition in the opposite direction, so that the time-dependence

cancels out. Retaining only those terms the dissipative part of Equation (2.12)

becomes

dρS(t)

dt
=
∑
ij

2Aij

(
Ôji(t)ρS(t)Ôij(t)−

1

2
[ρS(t), Ôij(t)Ôji(t)]+

)
, (2.15)

where [A,B]+ = AB +BA is an anticommutator. This is of Lindblad form and,

therefore, guarantees the positivity of the density operator. It has a straightfor-

ward physical interpretation: the environment causes transitions from the system

state i to the system state j at rate 2Aij.

If the conditions are such that a rotating wave approximation can be per-

formed in the interaction Hamiltonian — as is the case for the hot bath in the

model derived in chapter 4 — the term HSB in Eq. (2.8) would instead be

HSB =
∑
q

gq(O−x
†
q +O+xq). (2.16)

Following the same steps as above and ignoring the principal value terms, we

obtain

dρs
dt

= π
∑
ij

J(νij)
[
n(νij)

(
O+,ij(t)ρs(t)O−(t)−O−(t)O+,ij(t)ρs(t)

)
+ (n(νij) + 1)

(
O−(t)ρs(t)O+,ij(t)− ρs(t)O+,ij(t)O−(t)

)]
+ J(νji)

[
n(νji)

(
O+(t)ρs(t)O−,ij(t)− ρs(t)O−,ij(t)O+(t)

)
+ (n(νji) + 1)

(
O−,ij(t)ρs(t)O+(t)−O+(t)O−,ij(t)ρs(t)

)]
.

(2.17)

2.3 Quantum thermodynamics

Statistical mechanics describes the behaviour of ensembles of particles within a

probabilistic framework, addressing the system’s averages, correlations, and fluc-

tuations. In the limit of large systems — i.e, in the thermodynamic limit—

thermal fluctuations are negligible and the average properties derived by statisti-

cal mechanics give rise to classical thermodynamics. Quantum thermodynamics,

on the other hand, aims to describe the effects of quantum mechanics on the
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statistical properties at the nanoscale, with the control of energy transfer as the

main target. In realistic situations, the control of a quantum system requires an

understanding of the interaction with its environment. Therefore the theory of

open quantum systems is an essential toolbox.

The laws of thermodynamics, valid in both classical and quantum regimes,

provide fundamental restrictions to both the equilibrium and dynamics of any

system. In particular, the second law of thermodynamics, together with Lan-

dauer’s principle, establishes an intrinsic connection between thermodynamics

and information theory. The generality of these theories gives rise to a wide

realm of applications in fields such as quantum computation, nanotechnology,

material science, sensing, and quantum biology [44, 45].

The first law of thermodynamics ensures the conservation of energy. It states

that the change in the internal energy of a system is given by the heat Q absorbed

or supplied and the work W done on or by the system

∆U = W +Q. (2.18)

In classical thermodynamics, we call work any useful energy, however, in the

quantum regime, concepts such as mechanical work are not always applicable

making it more difficult to extend the definition. A broadly accepted way of

differentiating heat and work is to define heat as energy exchanged irreversibly

while work is always done reversibly [46]. This implies that only heat is associated

with changes in entropy S = −kbTr[ρ log ρ]. With this separation in mind, we

can write the average change of energy in a quantum system as

∂⟨H⟩
∂t

= Tr

[
∂ρ

∂t
H

]
+ Tr

[
ρ
∂H

∂t

]
, (2.19)

and identify the first and second term as heat and work currents, respectively.

The second law of thermodynamics is

Σ̇ =
∂S

∂t
+
∑
j

1

kbTj

∂Qj

∂t
≥ 0, (2.20)
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Figure 2.1: (a) Illustration of the energy flux in a heat engine. (b) Illustration of the
three-level heat engine.

where Σ̇ is the total entropy production,
∂S

∂t
the entropy change in the system

and
1

kbTj

∂Qj

∂t
the entropy flow rate between the systems and the j-th bath, with

temperature Tj. In the steady state the entropy change in the system vanishes,

and when applied to a system coupled to a hot and a cold bath, the requirement

of positive entropy production Σ̇ ≥ 0 leads to the Carnot efficiency

η ≤ ηc = 1− Tc

Th

. (2.21)

Where the equality holds in the reversible limit where heat is exchanged infinitely

slow with the reservoirs, so the total entropy production is zero. Figure 2.1.a

shows an illustrative picture of a heat engine with arrows pointing out the direc-

tion of energy flow. In the reversible limit the power output is effectively zero.

It is achieved when the quotient of the temperatures is equal to the quotient of

the energies exchanged with each bath
∣∣∣∣Qh

Qc

∣∣∣∣ = Th

Tc

. For temperatures such that∣∣∣∣Qh

Qc

∣∣∣∣ > Th

Tc

the thermodynamic cycle is inverted and the thermal machine op-

erates as a refrigerator, i.e, using work to take energy from the cold to the hot

reservoir. Moreover, note that the form of the second term of Eq. (2.20) leads

to another way of interpreting work: the energy exchanged with a reservoir at

infinite (or negative) temperature.

One of the most significant aspects of thermodynamics is its generality, mean-

ing that the same theory can be applied to a plethora of different systems. Quan-

tum thermal machines have been realised in a variety of systems, for example,

trapped-ions [47], superconducting qubits [48], atom-cavity systems [49], quan-
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tum dots [50, 51], and optomechanical devices [52–56]. In the remainder of this

section, we will first present the model of a maser as a heat engine, first introduced

by Scovil and Schulz-DuBois [14] and extensively analysed in the literature [15–

19]. We then describe the method of counting field statistics, used to calculate

energy currents in the following chapters of the thesis.

2.3.1 Three-level heat engine

Heat engines must be composed of a working medium connected to both a hot

and cold reservoir. They can operate in either cyclic strokes or in a continuous

steady state. A working medium composed of a qubit operating in a steady state

is equivalent to one connected to one reservoir with an intermediate temperature

T (Tc < T < Th) and, therefore, cannot produce work without violating the

second law of thermodynamics. In a three-level system, on the other hand, the

reservoirs can be coupled with levels with different energy gaps, which allows the

possibility of producing an effective temperature hotter than Th between a pair of

states. As a result, the three-level system is the simplest system that can function

as a working medium in a steady state [57].

Figure 2.1.b shows a schematic representation of a three-level laser as a heat

engine. The first and top levels are coupled with a hot reservoir at temperature

Th and the first and middle levels are coupled with a cold reservoir at temperature

Tc. We set the energy of the ground state to be zero e1 = 0, and the energy of the

second and third levels are e2, and e3, respectively. When there is no coupling

between levels 2 and 3, the population of each level with respect to the ground

state is given by

p3
p1

= exp

(
− e3
kbTh

)
,

p2
p1

= exp

(
− e2
kbTc

)
. (2.22)

The condition for lasing is a population inversion of the levels 2 and 3,

p3
p2

= exp

(
− e3
kbTh

+
e2
kbTc

)
≥ 1, (2.23)
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which can be rewritten as
∣∣∣∣Qh

Qc

∣∣∣∣ =
e3
e2

≤ Th

Tc

. This is the same condition as

having the thermal machine operating as a heat engine. Another way to view

this connection is to think in terms of the effective temperature of the levels 2 and

3. Inversion is equivalent to having the transition coupled to a bath with negative

effective temperature, which, as discussed in the last section, can be viewed as

work [58].

To model the threshold behaviour of this three-level laser, we need to allow

radiative decay associated with the transition between the two upper levels. The

working medium is weakly coupled to the reservoirs and the emitted light, so

there are no relevant energy shifts and we can use a phenomenological Lindblad

approach to describe the evolution of the density matrix of the three-level system

ρ̇ = −i[H(⟨a⟩), ρ] +Lh(ρ) +Lc(ρ). (2.24)

The dissipators are

Lα(ρ) = 2γ↑
α

(
λ↑
αρλ

↓
α − 1

2
(λ↓

αλ
↑
αρ+ ρλ↓

αλ
↑
α)
)

+ 2γ↓
α

(
λ↓
αρλ

↑
α − 1

2
(λ↑

αλ
↓
αρ+ ρλ↑

αλ
↓
α)
)
, (2.25)

with rates respecting detailed balance and jump operators

λ↑
h =


0 0 1

0 0 0

0 0 0

 and λ↑
c =


0 0 0

0 0 1

0 0 0

 . (2.26)

In addition, λ↓
α = (λ↑

α)
T , with α = h, c. The Hamiltonian of the system de-

pends on the ladder operators of the field a, a†, in which we make a mean-field

approximation

H =


e3 g⟨a(t)⟩ 0

g⟨a†(t)⟩ e2 0

0 0 0

 . (2.27)
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Figure 2.2: Effects of changing the temperature of the hot reservoir in the steady
state of the three-level heat engine. (a) Population difference between the two excited
levels. (b) Energy currents to the hot (red) and cold (blue) baths and work (black).
(c) The average value of the annihilation operator of photons. We consider an initial
perturbation in the occupation of photons of δa = 0.1. The parameters used in the
simulation are e2 = 0.4 e3, γ

↓
h/c = 0.05 e3, g = 0.3 e3 and Tc = 10K, and the reversible

limit is depicted in an orange vertical line at Th = 25K.

The evolution of the working medium Eq. (2.24) is coupled to the evolution of

the photons

⟨ȧ⟩ = −i(e3 − e2)⟨a⟩ − igρ12, (2.28)

where ρij corresponds to the element ij of the density matrix and g the coupling

strength of the interaction with the photon field.

Figure 2.2 shows the results of the long-time behaviour of a three-level am-

plifier. A state with ⟨a⟩ = 0 and ρ12 = 0 is always a solution of Eqs. (2.24)

and (2.28), therefore, we start with an initial condition slightly perturbed with

⟨a(t = 0)⟩ = δa. To observe the thermodynamic connection with laser emission,

we consider zero photon loss, which would correspond to having the three-level

heat engine inside a perfect cavity. The population inversion, the heat currents,

and the number of photons are shown in Fig. 2.1 (a), (b), and (c), as a function

of the hot temperature. We use the convention in which the energy currents are

positive when absorbed by the three-level system, so in the heat engine mode,

the hot current (red) is positive, and the cold current (blue) and output power

(grey) are negative. Following the definition in Eq. (2.19), the heat and work
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currents are

Q̇α = Tr[HLα(ρ)],

P = 2(e3 − e2)gIm[⟨a⟩ρ21] (2.29)

and respect the first law P = −(Qh + Qc). Note that the power is directly

connected to the coherent (off-diagonal) terms of the density matrix that emerge

from the unitary interaction with photons. This is a typical result in quantum

thermal machines since coherence was shown to be associated with work [59].

Above the threshold, Th > Tc e3/e2, depicted as an orange vertical line, popu-

lation inversion is achieved, and a thermodynamic cycle emerges with the three-

level system as the working medium. The magnitude of the average field operator

reflects the choice of initial perturbation; meaning that no more photons are emit-

ted into the cavity at the normal state, but |⟨a⟩| > δa at the laser mode.

2.3.2 Counting field statistics

One effective way of obtaining heat currents in open quantum systems consists of

introducing a variable that keeps track of the energy exchanged with the reser-

voirs. This method, called that of full counting statistics [60–62], involves defining

an annotated density operator ρu such that the characteristic function of the heat

distribution P (Q, t) is

G(u, t) =

∫
dQP (Q, t)eiuQ = Tr[ρu(t)]. (2.30)

Assuming a total Hamiltonian of the form Eq. (2.8) without the rotating wave

approximation in the system-bath interaction the time-evolution of the annotated

density operator is ρu(t) = Uu/2ρu(0)U
†
−u/2, with annotated time-evolution oper-

ator Uu = eiuHbUe−iuHb . Defining a general annotated operator Ou in the same

way it obeys the Heisenberg-like equation

i
dOu

du
= [Ou, HB]. (2.31)
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This implies that the ladder operator of the bath are bu,k = e−iωkub0,k. The

time-evolution operators U±u/2 are thus given by the usual expressions with the

Hamiltonians H±
SB =

∑
gkO(bke

∓iωu/2 + b†ke
±iωu/2). Instead of the von Neumann

equation, we have to solve

dρu(t)

dt
= −i(H+ρu(t)− ρu(t)H

−). (2.32)

Ignoring the principal value terms and following the steps described in section

2.2.2, we obtain a generalised master equation where the terms of the form OρO

acquire phase factors proportional to the energy difference νij = Ei − Ej

dρS,u
dt

= π
∑
ij

{
[(n+ 1)J(νij) + nJ(νji)] [e

iuνij(Oji(t)ρS(t)O(t) +O(t)ρS(t)Oij(t))

−O(t)Oji(t)ρS(t)− ρS(t)Oij(t)O(t)]
}
.

(2.33)

The moments of a distribution can be obtained with the derivatives of the

characteristic function. Therefore, by definition, the average heat is

⟨Q⟩ = −i
dG(u, t)

du

∣∣∣∣
u=0

= −iTr

[
dρu,S(t)

du

]
u=0

. (2.34)

Applying it to Eq. (2.33) we find

d⟨Q⟩
dt

= π
∑
ij

[(n+ 1)J(νij) + nJ(νji)]

× νijTr[Oji(t)ρS(t)O(t) +O(t)ρS(t)Oij(t)].

(2.35)

d⟨Q⟩
dt

= π
∑
ij

J(νij + ω)(νij + ω)Tr
[
(n+ 1)O−(t)ρs(t)O+,ij(t)− nO+,ij(t)ρs(t)O−(t)

]
+ J(νji + ω)(νji + ω)Tr

[
(n+ 1)O−,ij(t)ρs(t)O+(t)− nO+(t)ρs(t)O−,ij(t)

]
.

(2.36)
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Figure 2.3: Classical synchronisation. (a) Time derivative of the phase difference of
two oscillators as a function of detuning for different values of coupling strength. The
oscillators are synchronised when ∆̇ϕ = 0. (b) Phase diagram of synchronisation as
a function of the coupling strength and the detuning. The synchronised region, high-
lighted in grey, is called Arnold’s tongue.

2.4 Synchronisation of classical oscillators

Synchronisation or phase locking is a dynamic phenomenon where two or more

systems oscillate at the same frequency. It has applications in many different

contexts ranging from natural to social sciences [63]. A basic requirement for

synchronisation is that the systems must have a closed, stable and periodic tra-

jectory in phase space, or more specifically, they must have a limit cycle. Once

each system oscillates freely, they can synchronise by adjusting the frequency with

which they move along the cycle. In that way, synchronisation happens with a

phase symmetry breaking, where one particular phase is preferred over the rest.

The most straightforward classical system to synchronise is a set of two weakly

coupled oscillators. Their dynamics is governed by the Kuramoto model

d∆ϕ

dt
= ∆− ϵ sin(∆ϕ), (2.37)

where ∆ϕ is the phase difference of the two oscillators, ∆ is the frequency differ-

ence, and ϵ the coupling strength.

Figure 2.3(a) shows the average dynamics of the evolution of the phase differ-

ence between the oscillators. The oscillators are synchronised when ∆̇ϕ = 0, that

is, when their phase difference is constant over time. The range of detunings to

which the systems phase lock increases with higher values of coupling strength.

Fig. 2.3(b) shows the synchronised region (shaded in grey) as a function of the
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coupling strength and the detuning between the oscillators. The triangular shape

of the phase diagram is considered a universal signature of synchronisation known

as an Arnold tongue [63]. In chapter 6, we will discuss the generalisation of this

concept in the quantum regime and analyse its connection to condensation.



Chapter 3

Polariton Condensation

IN WHICH WE ARE INTRODUCED TO MICROCAVITY POLARITONS AND

ANALYZE CONDENSATION USING A KINETIC THEORY

Exciton-polaritons are the result of the strong light-matter interaction in a semi-

conductor. Their composition brings about combined properties of both excitons

and photons. In particular, having nonlinearities accompanied by small masses

makes them ideal candidates for condensation.

Since the early experiments achieved polariton condensation [64], advance-

ments in experimental techniques and theoretical understanding have enabled

numerous developments. In the current state-of-art, lattices of condensates can

be manipulated to research rich physics such as collective phenomena [65–68].

In this chapter, we describe a kinetic theory of photo-luminescence exper-

iments in a semiconductor microcavity. We unravel polariton condensation in

semiconductor microcavities by looking at the effects of the interaction with

phonons and pairwise polariton scattering separately. The approach, using ki-

netic theory, is closely based on Refs. [69] and [70]. The results are similar to

those obtained there, but here serve to lay the groundwork for the thermodynamic

analysis presented in the following chapter.

23
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3.1 Microcavity Polaritons

A photoluminescence experiment is a technique used to study the optical prop-

erties of materials by analyzing the light they emit after being excited by a light

source. Figure. 3.1(a) shows the configuration of a semiconductor microcavity

used in a photoluminescence experiment. A pair of distributed Bragg reflectors

(DBRs) are placed facing each other to play the role of high-reflective mirrors

with a semiconductor in the middle. The DBRs have alternating layers of high

and low reflective materials that produce destructive interference of the reflected

light, creating a stop band for transmission and a peak at the resonant frequency.

The trapped light acquires, to a good approximation, a quadratic energy disper-

sion Ec =
ℏ2k2

∥

2mc

with k∥ being the component of the wave-vector parallel to the

reflector’s surface and mc an effective mass.

For consistency, we consider GaAs microcavities throughout this chapter, how-

ever, all calculations are straightforward to adapt to other semiconductor micro-

cavities. Excitation of the semiconductor leads to a bound state of an electron-

hole pair, called a Wannier-Mott exciton. In the centre of the microcavity, a

thin layer of a semiconductor — of thickness comparable to the exciton’s Bohr

radius — is placed between layers with a larger band gap, forming a quantum

well. Hence, the excitons are confined to a two-dimensional surface.

The emitted light has three components: one perpendicular and two parallel

to the microcavity surface. The parallel components are connected by the in-

plane symmetry (we use the notation |k||| = k). Therefore, an angular measure

of the emitted light provides information on energy versus wave vector, and the

intensity would give the population in each emitted mode.

The top panel of Fig. 3.1(b) shows in black the dispersion curves of the cav-

ity photons and excitons that are the relevant excitations when the light-matter

coupling is negligible. In contrast to polaritons in bulk materials, the interaction

strength g can be controlled by properties of the cavity design. This presents the

advantage of producing fewer side effects on the quantum well material compared

to other methods such as applying an external field or altering the system’s tem-

perature. When the coupling is strong, the energy of the light-matter components
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Figure 3.1: (a) Structure of a microcavity. Two Bragg mirrors formed by staggered
layers of materials with high and low reflective materials are placed with layers of
semiconductor quantum wells in the middle. Light is pumped into the cavity and
trapped by the mirrors. The emitted light contains information on the dispersion curves
and population of excitons and photons in the weak coupling light-matter regime and
of polaritons in the strong coupling regime. (b) The upper graph shows the dispersion
curves of the excitons (dashed) and photons (dotted) in black and of the upper and
lower polaritons in red. In the lower graph, the excitonic (solid) and photonic (dotted)
fractions of the lower polaritons are displayed as a function of one of the in-plane wave
vectors. The exciton-photon detuning is ∆ < 0, hence, at k = 0 the lower polariton
has a dominant photonic character |C| > 1/2, and at high momentum it is exciton.
The system possesses rotational symmetry around the perpendicular axes, therefore
the graphs for one of the in-plane components of k are sufficient to cover the physics of
the two-dimensional system.

of the microcavity cannot be considered separately. The energy of the system is

given by the eigenvalues of the Hamiltonian

H =
∑
k

Ec(k, kz)a
†
kak + Eex(k)b

†
kbk + g(a†kbk + b†kak), (3.1)

where ak and bk are the annihilation operators of a photon and exciton with

in-plane wave vector k.

We diagonalize Eq. 3.1 by defining new operators as a weighted sum of the
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photon and exciton annihilation operators

pk = Xkbk + Ckak

qk = −Ckbk +Xkak,
(3.2)

where the weights Xk and Ck are complex numbers called Hopfield coefficients.

It is straightforward to show that because ak and bk obey bosonic commutation

relations, so do pk and qk. The Hamiltonian becomes that of two free particles,

namely the upper and lower polaritons

H =
∑
k

Elpp
†
kpk + Eupq

†
kqk. (3.3)

The dispersion curves show an avoided crossing between the exciton and photon

energy. They are given by

Eup,lp(k) =
1

2
(Ec(k, kz) + Eex(k)±

1

2

√
∆E(k)2 + 4g2, (3.4)

and are depicted in red in Fig. 3.1. The Hopfield coefficients that diagonalize the

Hamiltonian are

|Xk|2 =
1

2

(
1 +

∆E(k)√
∆E(k)2 + 4g2

)
and |Ck|2 =

1

2

(
1− ∆E(k)√

∆E(k)2 + 4g2

)
,

(3.5)

where ∆E(k) = Ec(k, kz)− Eex(k), and |Xk|2 + |Ck|2 = 1.

The composition of the lower polaritons is shown in the bottom graph of

Fig. 3.1(b), with Xk and Ck being the excitonic and photonic fraction, respec-

tively. At large momentum, the lower polaritons are almost entirely excitons.

However, near the ground state, they acquire a higher photonic fraction, with a

degree of mixture that depends on the detuning of the bare particles at k = 0.

We define the exciton-photon detuning ∆ = ∆E(k = 0).

The hybrid nature of polaritons provides them with a rich combination of

characteristics. Excitons have a mass approximately 104 times larger than the

cavity photon, as revealed by the difference in the curvature of the dispersion



3.2. KINETICS OF POLARITON CONDENSATION 27

curves. This implies a stark difference (∼ 104) in the value of the density of

states of polaritons with a non-negligible photonic fraction when compared to

excitons. Hence, while the exciton component allows pairwise scattering of po-

laritons and consequently a non-linear behavior, the photonic component inhibits

such effects. On the other hand, even though the photonic character reduces the

probability of interactions which increases the thermalization time, the low mass

of the photons is a facilitator for condensation since the critical temperature is

inversely proportional to the mass (see chapter 2). Moreover, the small lifetime

of the cavity photons (a few picoseconds) is an obstacle to full thermalization,

making it an out-of-equilibrium system.

3.2 Kinetics of polariton condensation

One of the early works on polaritons suggested that they could be used as a

potential source of coherent light [71]. The idea consisted of using stimulated

polariton-phonon scattering to generate a buildup of population on the ground

state, and, consequently, coherent emission. This was expected to result in relax-

ation by emission of acoustic phonons through the lower energy states, forming a

non-equilibrium condensate that would act as a laser without the need for popu-

lation inversion between conduction and valence bands. Nonetheless, the actual

picture is not so simple: kinetic simulations show that phonon emission is not

sufficient to generate a macroscopic occupation in the ground state, which can

be explained by the density of states [37]. At present, the polariton-polariton

interaction is known to be the main mechanism to promote the occupation of the

low energy polariton modes [72, 73, 8]. However, the details of how to treat this

interaction are not completely lighted on [74, 75].

Kinetic equations have been shown to be a strong tool to approach polariton

condensation [76–82, 70]. In this section, we use this well established framework

to simulate the dynamics and steady-state distribution of a polariton gas. We

consider a non-equilibrium system, with radiative decay and an external pump,

and study the role of each interaction in the condensation process.

To simulate the population dynamics of a polariton gas we use a Boltzmann
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equation (2.6) and include a pump term Pk(t) and radiative losses nkΓk

∂nk

∂t
= Pk(t)− nkΓk +

∑
k′,s

W
(s)
k→k′(t)−W

(s)
k′→k(t), (3.6)

where nk is the occupation number of the state k. Here a rotational symmetry

allows the replacement of the wave vector by its norm |k| = k. The W s represent

the scattering processes into and out of the k-th mode due to the s-th interaction.

3.2.1 Polariton-phonon interaction

We start our analysis by taking only phonon scattering, pump, and decay into

consideration and reproduce the calculations in [69, 73]. The polariton-phonon

interaction happens via emission and absorption, therefore, for a polariton with

in-plane wave vectors k0 and a phonon with q∥, four processes are possible

1. k0 → k1 + q∥,

2. k0 + q∥ → k1,

3. k1 + q∥ → k0,

4. k1 → k0 + q∥.

The processes 1, 2 (3, 4) are the out(in)-scattering terms for a polariton with

wave vector k0, which are inverse of each other and consequently have the same

equations of energy and momentum conservation. This symmetry is used as a

check on the numerical calculation. Applying Fermi’s golden rule, Eq. (2.7),

∂nk0

∂t

∣∣∣∣
pol-ph

=
2π

ℏ
∑
k1,q

∣∣M ∣∣2{ [(1 + nk0)nk1Nq − nk0(1 + nk1)Nq] δ(E0 + ℏu|q| − E1)

+ [(1 + nk0)nk1(1 +Nq)− nk0(1 + nk1)(1 +Nq)] δ(E0 − ℏu|q| − E1)
}
,

(3.7)

where M = M(k0, k1, q) is the matrix element of the interaction, and Nq the

number of phonons in the state q∥. The first two terms correspond to the processes

1 and 3, and the last two to 2 and 4. Taking the thermodynamic limit, we convert
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the sum into an integral and get, for process 1

∂n(E0)

∂t
=

D(E)

ρul16π2
dE0

∫ E0

0

dE1

∫
dθ1

Xk0Xk1(E0 − E1)
2

∂E1

∂(k21)
(ℏul)3

×

[
aeI

∥
e (q)I⊥e (a)− ahI

∥
h(q)I

⊥
h (a)

]2
√

(E0−E1)2

(ℏul)2
− |k0 − k1|2

f(E0)[1 + f(E1)][1 + F (|E0 − E1|)],

(3.8)

for the longitudinal acoustic phonons, and

∂n(E0)

∂t
=

D(E)

ρutr16π2
dE02

∫ E0

0

dE1

∫
dθ1

Xk0Xk1(E0 − E1)
2

∂E1

∂(k21)
(ℏutr)3

×

[
ΞeI

∥
e (q)I⊥e (a)− ΞhI

∥
h(q)I

⊥
h (a)

]2
√

(E0−E1)2

(ℏutr)2
− |k0 − k1|2

f(E0)[1 + f(E1)][1 + F (|E0 − E1|)]

(3.9)

for the transverse acoustic phonons. The rates for the other three processes

can be calculated analogously, by substituting the appropriate statistical factors.

The integration limits are given by the requirement of energy and momentum

conservation. The variables Ξe, Ξh, ae, and ah, are the electron and hole effective

deformations potentials, and ul and utr are the phonon speed of sound. The

numerical values of these parameters are given in [73]. A factor of 2 is added in

Eq. (3.9) to account for the possible directions of polarization of the transverse

phonon.

In Eqs. (3.8) and (3.9) the scattering rates are in terms of the occupation of

energy. This is n(E) = f(E)D(E)dE, where f(E) = f(E(k)) = nk is the occu-

pation number per state. The density of states D(E) depends on the curvature

of the dispersion curve and is such that

D(E)dE =
S

2π

(
∂E

∂(k2)

)−1

dE (3.10)

is the number of states with energy between E and E + dE, and S the area.

To simulate the population dynamics, we discretize both time and the energy
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Figure 3.2: Simulation of the Boltzmann equation considering radiative decay, polariton-
phonon scattering, and a energy independent pump. The initial condition is the same
as the pump. (a) Steady-state distribution has a thermal tail on the excitonic branch of
the polariton states, an accumulation of particles in the bottleneck region, and a small
occupation of the polariton states with low energy. (b) The exciton effective temperature
approaches the lattice temperature (10K) in the steady state. The final temperature
for the time interval shown is 9.87K. (c) The density of states as a function of energy
shows a stark change of many orders of magnitude for states from excitonic states to
low-energy states. The parameter region of transition corresponds to the bottleneck
region.

space and iterate the populations with an interval ∆t chosen so that

Max

[
∆f(E)

f(E)

]
= 0.01. (3.11)

The energy bins must be considerably smaller than the average energy exchanged

and the rate of change in the distribution. We follow the discretization choice

in [73] and consider a pump that generates a constant population over the polari-

ton states. However, the particular shape of the generation of particles has been

shown to have little importance [8]. This is consistent with what is expected of

a thermalization process, where irreversibility implies independence of the initial

conditions. Even though the losses prevent a full thermalization of polariton, we

still expect it to act as a source of irreversibility. The decay rate of each mode is

given by the lifetime of its components weighted by Hopfield coefficients

Γk =
|Ck|2

τc
+

|Xk|2

τex
. (3.12)

τc and τex are the photon (∼ 5ps) and exciton (∼ 106ps) lifetimes.

Fig. 3.2(a) shows the steady state distribution of a simulation taking polariton-

phonon scattering as the only interaction. The results agree with [73]. The sce-
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nario is unrealistic but shows the role played by phonons. Polaritons with energy

below 7 meV have a non-negligible photonic fraction and are not able to over-

come the radiative losses to thermalize. This is attributed to the small density of

states inherited from their photonic component, seen in Fig. 3.2(c). The peak of

occupation happens in the called “bottleneck” region of the dispersion, where the

transition from high to low density of states happens [37]. A portion of the higher

energy polaritons acquires a thermal distribution with effective temperature dis-

played in Fig. 3.2(b). The time required for the thermalization is approximately

400ps, and the final temperature approaches the lattice temperature (blue line)

from below.

3.2.2 Polariton-polariton interaction

Polariton-polariton scattering rates can be calculated from Fermi’s golden rule

analogously to the phonon scattering rates. However, we follow the simplified

approach derived in [70] with small changes to capture the physics of GaAs mi-

crocavities instead of the CdTe. These authors had argued that with only phonon

and polariton-polariton scattering, condensation in GaAs would require a density

near saturation nsat = 1.3×1011cm2. This would imply that other means of relax-

ing to lower states, such as electron scattering, for example, must be taken into

account to explain condensation in these systems, which occurs at densities well

below saturation. Here we consider a microcavity with 10 quantum wells to show

that condensation can be justified as an effect of polariton-polariton interaction.

The saturation density increases directly with the number of quantum wells and

the inter-particle scattering is altered as discussed below.

The approach takes into consideration two separate regions of the polariton

dispersion: an excitonic region where E > Eex(k = 0) is considered to possess

a thermal distribution with a varying temperature Tx and density nx, and a

polariton region whose dynamics is affected by the pair-wise scattering of the

excitons in the first region and by radiative decay. This corresponds to assuming

that the exciton thermalization time is rapid in comparison with the polariton
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relaxation time. The polariton population dynamics is given by

dN lp
k

dt
= W in

k n2
x

(
1 +N lp

k

)
−W out

k nxN
lp
k − Γlp

k N
lp
k (3.13)

and the density in the exciton reservoir is altered by pair-wise scattering W in/out,

radiative losses and a pump px

dnx

dt
= − 1

S

∑
k

dglp
k

(
W in

k n2
x

(
1 +N lp

k

)
−W out

k nxN
lp
k

)
− Γxnx + px. (3.14)

N lp
k is the occupation number of the state k, dglp

k the degeneracy of each state,

Γlp and Γx are the polariton and exciton decay rates and px is the pump. We

have assumed that the occupation of the exciton states is considerably smaller

than one.

The exciton temperature is related to the energy density in the reservoir

ex(t) = nx(t)kBTx(t), (3.15)

that depends on the same factors as the exciton density in addition to losses

through phonon relaxation

dex
dt

=− 1

S

∑
k

elpk dg
lp
k

(
W in

k n2
x

(
1 +N lp

k

)
−W out

k nxN
lp
k

)
+

ρx
2π

∑
i

∆Eexi
dNx

i

dt

∣∣∣∣
ph

+ pxkBTL − ΓxnxkBTx,

(3.16)

where the ∆E is the size of the energy grid in the exciton region and we assumed

that the pump generates excitons with a thermal distribution with the lattice tem-

perature TL. The scattering rates W in/out must consider the Coulomb interaction

and saturation effects and, therefore are effectively described as exciton-exciton

and exciton-photon interaction. We use the expressions

W in
k =

2π

ℏkbTx

M2
ke

elpk /kbTx

W out
k =

M2
k

ℏ
ρxe

2elpk /kbTx

(3.17)

derived in [70] with Mk = MxxXk + σsatCk, however, we use a more updated
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Figure 3.3: Polariton dynamics in GaAs microcavities using the model proposed in [70].
(a) Steady-state polariton distribution for pumps of (1− 7) 108cm−2ps−1. The vertical
line indicates the boundary of the exciton reservoir. (b) The energy at which the peak of
polariton distribution is located for different values of px. The threshold of condensation
at the ground state is px ≈ 5.5 × 108cm−2ps−1. The sub-figures (c) and (d) show the
exciton density and temperature as a function of the pump. The exciton density grows
linearly with the pump power and does not reach saturation, however, the temperature
acquires a smaller slope after the condensation threshold.

expression for the matrix elements of the interaction [74] and take the number of

quantum wells Nqw into consideration

Mxx =
6EBa

2
b

2Nqw

σsat =
32π

7Nqw

ga2b .

(3.18)

The values of binding energy EB and Bohr radius ab for GaAs and the bare

exciton density of states ρx are the same as in the last section, taken from [73].

In Fig. 3.3(a) we show the steady state distribution of population for different

pump rates. The higher the pump rate, the higher the peak of the distribution,

and the lower the energy of the peak. Above the pump threshold, the peak is

at the ground state, which becomes microscopically occupied. This behavior is

qualitatively consistent with the results obtained by the same model for CdTe

microcavities and with experimental observations [72]. Figure 3.3(b) shows the
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energy of the peak of the distribution for different pump values, indicating that

the threshold is at px ≈ 5.5× 108cm−2ps−1.

The density of excitons, shown in Fig 3.3(c), grows linearly with the pump

for all values considered and does not reach saturation. The dependence of the

temperature on the pump changes after the threshold, acquiring a smaller slope.

In that case, the pairwise exciton scattering is comparable to the exciton radiative

recombination, meaning the two factors add up as loss mechanisms in the exciton

reservoir.

3.3 Discussion

In this chapter, we have investigated the dominant interactions in a polariton gas

and looked at how the different parts of the dispersion branch respond to each

of them. In conclusion, the polariton branch can be divided into three: excitons,

bottleneck polaritons, and low-energy polaritons. The excitons interact rapidly

with the phonons and with each other, relaxing to a thermal distribution. The

low-energy polaritons, on the other hand, have a small density of states, which

implies smaller relaxation rates. Therefore, the thermalization of this part of the

distribution is conditioned to either a longer cavity lifetime or a large in-scattering

rate of particles resulting from the interaction between bottleneck polaritons and

excitons.

The results presented in this chapter illustrate the fundamental function of

each component of the system. The phonons act as a cold reservoir that extracts

energy from the polariton gas. The bottleneck polaritons, interacting with exci-

tons, are responsible for populating the condensate mode. The pump adds energy

and particles to the gas, not only enabling a non-trivial steady state but also gen-

erating the particle number needed to stimulate the polariton-exciton interaction.

In the next chapter, this picture will be used as a base for the development of a

few-level polariton model and its thermodynamic interpretations.

Other physical mechanisms that could affect polariton condensation, such as

electron interaction and piezoelectric phonon effects, have been considered in the

literature, but for semiconductor microcavities were proved to be small when
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compared to the interactions we considered [73]. Interactions with particles in

the upper polariton branch are also a small possibility and so are not considered

in our calculation.

Additionally, there are non-linear effects caused by the polariton-polariton in-

teraction, which include a blue shift and phase-filling effects. The first is a shift

in the energy of the polariton modes caused by their excitonic component and

neglected in our calculations. The second, included in Eq. (3.18), is a satura-

tion effect inherited from the fermionic nature of the fundamental components

excitons, i.e., electrons and holes. This correction can be used up to a certain

density, however, if the average de Broglie wavelength of the particles is compa-

rable to their average separation distance the Boltzman equation is no longer a

valid approximation [34].





Chapter 4

Thermodynamics of Polariton Condensates

IN WHICH WE MODEL A POLARITON GAS AS A

QUANTUM THERMAL MACHINE

The kinetic approach, used in the last chapter, has served as the groundwork

for the analysis of polariton condensation in many different experimental settings

and contexts [80, 81, 83–86]. Although developing a theory that precisely ac-

counts for experimental specifics is crucial, the multitude of details can obscure

the identification of the core requirements for condensation. In this chapter, we

suggest a universal description of non-equilibrium condensation as the output of

a thermal machine. We show how condensation can be described using a three-

level laser model, whose connection to the thermodynamics of heat engines, first

pointed out by Scovil and Schulz-DuBois, has been extensively studied [14–19].

We base our model on the collection of knowledge provided by theoretical and

experimental works and the results of the preceding chapter.

Our approach restricts condensation into a minimal model allowing the ex-

traction of fundamental thermodynamic constraints of the system, such as the

Carnot limit. We investigate properties such as efficiency, and determine the

conditions required for condensation. An important result is that the occurrence

of condensation is determined by two temperatures whose difference controls the

direction of energy flow in the system, governing the formation of the conden-

37
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sate, and allowing the losses to be overcome. Our work further clarifies that

non-equilibrium condensation requires a population inversion, albeit of an un-

conventional kind, and emphasizes the need for an effective coupling to a cold

reservoir. This last requirement – the need for a rapid depopulation of the lower

state – is well known in the context of lasers, but is rarely explicit in the literature

on driven-dissipative condensates.

The thermodynamics of three-level amplifiers has been studied before, and

our main contribution is to apply these results to driven-dissipative condensation.

However, this application does require two extensions of the general framework.

Firstly, we consider not just amplification, but the balance of gain and loss in

the full system comprising a condensate driven by a gain medium. This allows

us to compute non-equilibrium phase diagrams and study how thermodynamic

quantities such as efficiency vary across them. Secondly, we allow for the possi-

bility that the thermal machine operates between reservoirs at different chemical

potentials, as well as different temperatures, implying that it absorbs work as

well as heat. This is necessary in practice for driven-dissipative condensates, as

discussed below, but also relevant in cases such as electrically-driven lasers, where

the voltage bias is a source of work.

4.1 Condensates as heat engines

Driven-dissipative condensates are typically understood as open quantum sys-

tems, in which energy from an incoherent pump reservoir is converted into a

coherent condensate, which is in turn emitted into an environment. As discussed

further below, we argue that if the pump is an incoherent source it corresponds

to a heat bath, while the coherent emission from the condensate is a source of

work. With these identifications we identify the basic form of condensate as a

heat engine, converting heat, from the pump, into work. It follows immediately,

as a consequence of the second law of thermodynamics, that a consistent descrip-

tion of condensation requires consideration of a cold reservoir, in addition to the

hot reservoir representing the pump. Note that in the following we extend these

considerations to allow the pump to provide work, as well as heat.
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Figure 4.1: (a) Illustration of the main processes that lead to condensation of inorganic
microcavity polaritons. A non-resonant pump creates excitons that relax to lower energy
states through phonon emission. Pair-wise polariton scattering leads to occupation in
the lower energy modes if it can overcome radiative losses. (b) The condensation process
is modeled as the outcome of a three-level heat engine with a hot bath connecting
the ground state and the most energetic state and a cold bath connecting the ground
state to the middle state. The condensate is a classical field interacting with the two
excited states of the working medium. The rectangles on the top of each level show the
corresponding states in the dispersion curve. The first and third levels correspond to
n− 1 and n polaritons in the bottleneck, respectively. The middle level corresponds to
a state with a high energy exciton. (c) Model of a microcavity comprising M three-level
systems that contribute to the growth of the condensate, which competes with loss due
to the finite polariton lifetime.

To develop this idea further, we construct a few-level model of condensation.

As illustrated in Fig. 4.1(a), particles are created by a high-energy pump, which

produces electron-hole pairs that populate the exciton states at high momen-

tum. This population quickly begins to thermalize with the emission of acoustic

phonons [71], but such scattering becomes ineffective for the polaritonic final

states at low energy and momentum. As confirmed by the kinetic simulations in

the previous chapter and previous works [32, 36, 64, 73, 8, 80–82, 70, 84, 87–89],

this bottleneck effect [37] can be overcome by polariton-polariton scattering. If

the density is large enough this scattering into low-energy states can exceed their

loss. It then becomes a stimulated process which leads to condensation [90].

To determine the thermodynamic constraints on condensation we consider a

minimal model, consisting of a heat engine whose working medium is a three-
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level system with energies e1, e2, and e3. We discussed in chapter 2 that this

is the simplest possible case [57]. As shown in Fig. 4.1(b), we suppose that the

highest energy state of the working medium, |3⟩, corresponds to a population

of n polaritons in the bottleneck region. These can undergo pairwise scattering,

adding one particle to the condensate and promoting one polariton to a higher-

energy exciton state. Due to the macroscopic occupation of the condensate mode,

such stimulated scattering can be treated as an interaction with a condensate

field external to the working medium. It takes the latter to an intermediate

state, |2⟩, that has a particle in a high energy state. The high-energy exciton can

then transition back to the bottleneck region by phonon emission, leading to the

state |1⟩ with bottleneck population n − 1. In the terminology of the polariton

parametric oscillator [90], the populated bottleneck states are the pump states

and the high-energy exciton state generated by pairwise scattering is the idler.

The three-level working medium drives the polariton condensate, which we

treat as a classical mean field. The relevant Hamiltonian is

Hs = gc(p
†
cp

†
ipppp + pcpip

†
pp

†
p), (4.1)

where pc, pp, and pi are the annihilation operators for particles in the condensate

state, pump state, and idler state, respectively, and gc is the interaction strength.

We consider a macroscopically occupied condensate mode and approximate gcpc ≈

gc⟨pc⟩ = e−iωtΩ/2, where ω is the condensate frequency, and for a condensate of

N particles

Ω = 2gc
√
N. (4.2)

In the basis of the three-level system, the final three terms in each product in

Eq. (4.1) become transition operators p†ipppp = |2⟩ ⟨3|, and the Hamiltonian for

the scattering process reduces to that of the three-level system driven by a field

corresponding to the condensate,

Hs =
Ω

2

(
e−iωt |3⟩ ⟨2|+ eiωt |2⟩ ⟨3|

)
. (4.3)

This implies that the energy transfers between the three-level system and the
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condensate are work, in accordance with the standard partition of energy currents

in Eq. (2.19) in which work arises from the time-dependence of a Hamiltonian

and heat from that of the density-matrix. Using this along with Eq. (4.3), the

power supplied to the condensate is

⟨Ẇ ⟩ =
〈
∂Hs

∂t

〉
= ωΩIm

{
Tr[ρeiωt |2⟩ ⟨3|]

}
= ωΩImρ32, (4.4)

where ρ32 is an element of the density matrix in the time-dependent basis intro-

duced below.

Additionally, the three-level system exchanges energy and particles with a

reservoir of acoustic phonons and a reservoir of excitons that is generated by the

pump. The phonons act as the cold bath of the heat engine, extracting heat

from the working medium as the excitons relax to the bottleneck (|2⟩ → |1⟩).

The excitons generated by the external pump act as the hot bath. To stay

within the framework of a three-level model we suppose they feed the states

at the bottleneck, causing transitions from |1⟩ to |3⟩. The lifetime of a reservoir

exciton is relatively long, so that the hot reservoir forms a quasi-equilibrium state

with temperature Th and chemical potential µ. This means that the heat engine

operates with a chemical potential drop between the hot and cold reservoirs.

Since particles flow through the engine across this chemical potential drop, its

energy input consists of both work and heat.

In summary, the thermal machine operates in a mode in which the hot reser-

voir inputs work and heat into the three-level system, which performs work by

interacting with the condensate and emits the rest of the energy into a cold bath of

phonons. Combining the free Hamiltonian of the three-level system, the coupling

to the condensate, and the coupling to the baths, we have

H0 +Hsb = e3 |3⟩ ⟨3|+ e2 |2⟩ ⟨2|+ e1 |1⟩ ⟨1|+
Ω

2

(
e−iωt |3⟩ ⟨2|+ eiωt |2⟩ ⟨3|

)
+
∑
k

gph
k

(
|1⟩ ⟨2|+ |2⟩ ⟨1|

)
(bk + b†k)

+
∑
q

gp
q

(
|3⟩ ⟨1|+ |1⟩ ⟨3|

)
(xq + x†

q).

(4.5)
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The energies e1,2,3, which we refer to as the bare states are depicted in Fig. 4.2(a),

and are the energy of the system when the field is turned off. The second and

third lines of Eq. (4.5) represent the interactions with the cold and hot baths,

with coupling strengths gph
k , and gp

q , and annihilation operators bk and xq, respec-

tively. In the present case, they refer to phonons, and excitons in states which

repopulate the bottleneck. One could also consider, in addition to the process

where a pump-generated exciton transfers into a bottleneck state, one in which

it transfers into the higher-energy state, which then relaxes to the bottleneck by

phonon emission. This could be incorporated by using a four-level model, with

an additional state |4⟩, representing the state with an additional high-energy ex-

citon, which then relaxes to |3⟩ by phonon emission. Such a model could be

further extended to include higher phonon states, giving a form similar to that

used for photon condensation by Kirton and Keeling [5]. However, inclusion of

these additional pathways would not be expected to qualitatively affect our re-

sults, because under reasonable conditions the reservoir population will decrease

with increasing energy, so that the strongest effect of repopulating the bottleneck

comes from the process we consider.

We eliminate the time dependence of Eq. (4.5) by using the rotating frame

with the condensate frequency (|1R⟩ , |2R⟩ , |3R⟩) = (|1⟩ , |2⟩ , e−iωt |3⟩), which leads

to
H ′

0 +H ′
sb = (e2 +∆) |3R⟩ ⟨3R|+ e2 |2R⟩ ⟨2R|+ e1 |1R⟩ ⟨1R|

+
Ω

2

(
|3R⟩ ⟨2R|+ |2R⟩ ⟨3R|

)
+
∑
k

gph
k

(
|1R⟩ ⟨2R|+ |2R⟩ ⟨1R|

)
(bk + b†k)

+
∑
q

gp
q

(
|3R⟩ ⟨1R|xq + |1R⟩ ⟨3R|x†

q

)
.

(4.6)

The transformation to this rotating basis would produce a time dependence in

the coupling to the hot bath, which, however, has been removed by transforming

to an interaction picture with respect to a Hamiltonian
∑

q ωx
†
qxq, and making

the rotating wave approximation in the system-reservoir coupling. The detuning

∆ = (e3 − e2) − ω corresponds to the energy difference between the low-energy

final state of the scattering and the condensate. The energy levels given by the
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Figure 4.2: Energy diagram of the three-level system in the three different bases, and
the spectral densities of the hot and cold bath. (a) The energy levels, ei, in the bare
basis when the field is turned off. Correspond to the ones shown in Fig. 1. (b) When the
Hamiltonian is transformed into a rotating basis its time dependence is lost, however,
the states acquire a periodicity in energy. Two Floquet zones are included (e′i) in the
diagram. (c) The interaction with the condensate field mixes the states of the rotating
basis to produce eigenstates with energies (ẽ2, ẽ3), split by Λ =

√
∆2 +Ω2. These states

are replicated in the two Floquet zones. The red and blue arrows indicate transitions
due to the hot and cold baths respectively (see text).

first three terms of this Hamiltonian are depicted in Fig.4.2(b). We note that,

as the energies of a periodically-driven system, they are defined up to multiples

of the driving frequency ω. We define the zero of energy to be e1 = 0. For the

other energies, we use values representative of a GaAs microcavity, e2 = 5 meV

and e3 − e2 = 1 eV.

4.2 Methods

To analyze Eq. (4.6) we use the standard method, previously applied to a three-

level heat engine in [17], in which one transforms to the eigenbasis of H ′
0 and

eliminates the heat baths within the Born-Markov approximation. The transfor-

mation to the eigenbasis of H ′
0 is effected by the rotation


|3̃R⟩

|2̃R⟩

|1̃R⟩

 =


cos θ/2 sin θ/2 0

− sin θ/2 cos θ/2 0

0 0 1



|3R⟩

|2R⟩

|1R⟩

 = U


|3R⟩

|2R⟩

|1R⟩

 , (4.7)
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which makes H̃0 = U †H ′
0U diagonal when tan θ = Ω/∆. The resulting energies,

ẽ1 = e1 = 0 and ẽ2,3 =
(
e3−ω+e2∓

√
∆2 + Ω2

)
/2 are depicted in Fig. 4.2(c). To

derive a master equation for the working medium we follow the steps explained

in section 2.2. We neglect the principal value terms but do not make the secular

approximation. The principal value terms emerge from tracing out the bath

degrees of freedom and correspond to energy shifts, which can be included in

the original Hamiltonian. Further justification for these approximations is given

in Ref. [39] and chapter 2. The resulting equations-of-motion are given in Eqs.

(4.16–4.18) and Eqs. (A.1–A.6).

The method of counting field statistics was implemented to obtain the energy

currents to the bath (also described in chapter 2). We find

⟨Q̇c⟩ = ẽ3R
c
3 + ẽ2R

c
2, (4.8)

⟨Ėh⟩ = (ẽ3 + ω)Rh
3 + (ẽ2 + ω)Rh

2 . (4.9)

The energy current to the cold bath is entirely heat and hence denoted Qc,

whereas that to the hot bath comprises both heat and work, with the latter

arising from the flow of particles from the exciton reservoir, which in general has

a non-zero chemical potential. The rates that appear in the energy currents are

Rc
2,3 = πJc(ẽ2,3)[∓(nc(ẽ2,3) + 1) sin θRe[ρ23]

+(1± cos θ)((nc(ẽ2,3) + 1)ρ22 − nc(ẽ2,3)ρ11)] (4.10)

Rh
2,3 = πJh(ẽ2,3 + ω)[∓(nh(ẽ2,3 + ω) + 1) sin θRe[ρ23]

+(1∓ cos θ)((nh(ẽ2,3 + ω) + 1)ρ33 − nh(ẽ2,3 + ω)ρ11)]. (4.11)

Here ρij are the elements of the density matrix in the basis (|1R⟩ , |2R⟩ , |3R⟩).

These rates can also be expressed in terms of the elements of the density matrix

in the diagonal basis, (|1̃R⟩ , |2̃R⟩ , |3̃R⟩). Denoting those elements by ρ̃ij the rates
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are

Rc
2,3 = πJc(ẽ2,3){(1± cos θ)[(nc(ẽ2,3) + 1)ρ̃22,33 − nc(ẽ2,3)ρ̃11]

+ (nc(ẽ2,3) + 1) sin θRe[ρ̃23]} (4.12)

Rh
2,3 = πJh(ẽ2,3 + ω){(1∓ cos θ)[(nh(ẽ2,3 + ω) + 1)ρ̃22,33 − nh(ẽ2,3 + ω)ρ̃11]

− (nh(ẽ2,3 + ω) + 1) sin θRe[ρ̃23]}. (4.13)

Jc,h are the spectral densities for the cold and hot baths, respectively. In the

following we take a Lorentzian for the cold phonon bath,

Jc(x) = (αc/2)
[
(x− e2)

2 + g2ph

]−1
, (4.14)

and a step function for the hot pump bath

Jh(x) = αhΘ(x− E0). (4.15)

We have also tested a Gaussian spectral density for the cold bath, and found

no relevant differences. The parameters αc,h control the maximum values of the

spectral density, and gph the width of the Lorentzian distribution, whose value

needs to be large enough to allow the Born-Markov approximation. E0 is the

energy of the lowest exciton state in the pump reservoir. The bath occupation

function for the cold bath is nc(E) = (eβcE−1)−1, and that for the hot bath is the

corresponding grand-canonical form, including the chemical potential, nh(E) =

(eβh(E−µ) − 1)−1.

4.3 Results

We begin by analyzing the dynamics of the cycle in terms of the occupations of

the states |nR⟩ (n = 1, 2, 3). The diagonal elements of the density matrix, in the
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rotating basis, obey

(ρ̇)11 = (Rc
2 +Rc

3) +
(
Rh

2 +Rh
3

)
≡ Rc −Rh (4.16)

(ρ̇)22 = − (Rc
2 +Rc

3) +R = −Rc +R (4.17)

(ρ̇)33 = −
(
Rh

2 +Rh
3

)
−R = Rh −R. (4.18)

Here

R = ⟨Ẇ ⟩/ω = Ω Imρ32, (4.19)

and Rc,h
2,3 are given by Eqs. (4.10) and (4.11) or (4.12) and (4.13). From these

expressions we identify Rc = (Rc
2 + Rc

3) as the rate of population transfer from

|2R⟩ to |1R⟩, due to the cold bath, Rh = −(Rh
2 + Rh

3) at that from |1R⟩ to |3R⟩,

due to the hot bath, and R as that from |3R⟩ to |2R⟩, due to the interaction with

the condensate. The steady-state condition,

R = Rc = Rh, (4.20)

is that the rates around each part of the cycle are equal.

The energy fluxes to the baths, Eqs. (4.8, 4.9), can be interpreted [18] in

terms of the eigenstates of H ′
0, |ñR⟩, which differ from the states |nR⟩ around

which the population circulates. Due to the oscillating driving field the states

are Floquet states associated with a periodic quasi-energy. The transformation

to the rotating basis introduces replicas of the original energy levels, which are

then mixed by the driving field to form dressed-states with shifted energies. This

process is illustrated in Fig. 4.2, which shows the original energy levels (with the

field turned off) in the left panel (a), their replicas under periodic driving, (b),

and the dressed states obtained by diagonalizing H ′
0, (c).

The heat current to the cold bath, Eq. (4.8) is the sum of two contributions,

each the product of the quasi-energy of a dressed state ẽ2, ẽ3, and one of the two

rates, Rc
2,3. Thus, we can interpret this heat flow as arising from two transitions

in the Floquet spectrum, as illustrated in Fig. 4.2(c). The hot bath acts similarly,

but induces transitions from the ground state to levels in the second quasi-energy

band. The cycle is closed by the power output, Eq. (4.4), that consists of
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quanta of energy ω emitted at the rate R. This is illustrated in Fig. 4.2 as

two independent transitions, each between equivalent dressed states, suggesting

the formation of two independent cycles [18]. However, it should be noted that

this interpretation implies a secular approximation and only holds in a strong-

driving limit. The energy currents cannot in general be interpreted as coming

from two separate cycles, as Rc
2,3 ̸= −Rh

2,3. In fact, the rates in Eqs. (4.12, 4.13)

contain contributions of the form of Boltzmann transition rates, and interference

terms weighted by the mixing angle θ. The latter are responsible for coupling

the two fictitious cycles, that is, because of the sign difference they constitute

transitions to the ground state in inverted directions, which is effectively an inter-

cycle transition.

The first law of thermodynamics is ⟨Ẇ ⟩ + ⟨Q̇c⟩ + ⟨Ėh⟩ = 0. Using the forms

for ⟨Ẇ ⟩, ⟨Q̇c⟩, and ⟨Ėh⟩, and the steady-state condition, Eq. (4.20), it becomes

ẽ2(R
c
2 +Rh

2) + ẽ3(R
c
3 +Rh

3) = 0. (4.21)

This condition is not exactly satisfied, but holds to a good approximation in the

parameter regimes used here, where the Born-Markov approximation is appropri-

ate.

4.3.1 Steady state of the microcavity

We can describe a complete system, including the condensate, by noting that the

growth of the condensate comes from the output of a large number M of identical

three-level heat engines. M represents the number of states in the bottleneck

region that generate scattering to the ground state of the polariton distribution,

and is on the order of M = 104 in typical cases. The growth rate of a condensate,

of population N , is then MR(N), where the dependence of the cycle rate R on

Ω and therefore N has been made explicit. This growth competes against the

losses due to radiative polariton decay, with rate γ. The steady-state condition

for the condensate number, Nc, is then that

MR(Nc) = Ncγ. (4.22)
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Figure 4.3: Phase diagram of polariton condensation as a function of the temperatures
of the hot and cold reservoir for different microcavity decay rates. The points below
each line correspond to the condensate region. The red line corresponds to the case
of infinite microcavity lifetime, where condensation occurs at the onset of inversion.
The parameter region of the condensed phase is smaller for larger radiative decay, as it
implies more inversion is required to produce condensation.

In the following, we choose parameter values typical of GaAs microcavities.

The prefactor of the phonon spectral density is chosen in line with the exciton

relaxation times obtained numerically and experimentally [8] αc = 0.1 ps−1. We

take the linewidth of the phonons to be gph = 1.7 ps−1. The temperature of the

cold bath is the lattice temperature of the semiconductor, which we take to be

10 K. The spectral density, as well as the chemical potential, and temperature of

the hot bath, depend non-trivially on the incoherent pump. We choose αh = 0.2

ps−1, E0 = 1 eV, E0 − µ = 8 meV and Th = 200 K initially, and investigate the

effects of varying these parameters. We assume a polariton lifetime of 1/γ = 1

ps. For the polariton-polariton scattering strength we use the expression derived

in [36] to estimate gc ≈ 0.048 ps−1. The detuning appears in our model with

fixed condensate and transition energies, and will determine the condensate in-

scattering rate, i.e., the gain from the working medium. In practice, however, the

condensate, pump, and idler states lie in a continuum, and a range of detunings

are present. We expect condensation to occur in the most favorable mode, and

so focus on the resonant case ∆ = 0.

Eq. (4.22) and the equations-of-motion can be solved numerically to determine

the condensate occupation Nc in the steady-state. This solution can be used

to map the phase diagram, i.e., the region of parameter space in which Nc ̸=

0. Fig. 4.3 shows a numerically computed phase diagram for condensation, in

terms of the temperatures of the hot (pump) and cold (lattice) heat baths, for

several values of the decay rate γ. The condensed state, with Nc ̸= 0, lies below
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each curve, with the normal state, Nc = 0, above it. For these parameters the

transition is continuous. It can be seen that the phase boundaries approach the

red diagonal line as γ → 0. This corresponds to the ideal thermodynamically-

reversible limit [14], in which condensation occurs when inversion is reached,

ρ33/ρ22 = 1. As noted by Scovil and Schulz-DuBois [14], the requirement of

inversion implies laser action is bounded by the Carnot efficiency, and reaches it

in the reversible limit where inversion first appears. Generalizing their argument

to include the chemical potential of the hot reservoir, the condition for inversion

ρ33
ρ22

=
ρ33
ρ11

ρ11
ρ22

= e−βh(e3−µ)eβce2 > 1, (4.23)

implies that the efficiency

η = (Wout −Win)/Qin = (ω − µ)/(e3 − µ), (4.24)

is less than the Carnot efficiency ηC = 1− Tc/Th. Here we have used e3 − e2 = ω

(∆ = 0) and identified ω as the work output per cycle, µ as the work input, and

e3 − µ as the heat input (with e1 = 0).

The continuous transition can be understood using a perturbative expansion

of the steady-state in Ω. In the normal state we have Ω = 0 so θ → 0, ẽ2 = e2, ẽ3 =

e3 − ω. The equations-of-motion reduce to the standard Lamb equations for a

three-level laser [18], given in the Appendix. The steady-state has the populations

ρ33/ρ11 and ρ22/ρ11 in equilibrium with the hot and cold baths, respectively,

and vanishing coherences. Expanding around this solution gives the steady-state

coherence to first order in Ω, and hence, using Eq. (4.19), the scattering rate

R =
Ω2 (ρ33 − ρ22)

γc
↓ + γh

↓
=

4g2cN (ρ33 − ρ22)

γc
↓ + γh

↓
. (4.25)

Here γc
↓ (γh

↓ ) are the emission rates into the cold (hot) bath, respectively. Eq.

(4.25) is the Fermi golden rule expression for scattering into a final state, with

a linewidth generated by the emission into the baths. It defines, via Eq. (4.22),

the critical inversion at which gain exceeds loss, and hence the phase boundary.

The energies involved in the cycle are unaffected by the condensate to this order,
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Figure 4.4: Diagonal elements of the density matrix in the bare basis ρ22/33 and the
eigenbasis ρ̃22/33 for two different values of cavity decay. The elements in the different
basis coincide at the normal state, and at the phase boundary to the condensed state,
they become mixed and ρ̃33 = ρ̃33. For a microcavity with larger decay rate the phase
transition requires some population inversion (a), while for small decay rate the phase
transition is near the inversion point (b).

so the efficiency, Eq. (4.24), is constant.

The red line in Fig. 4.3 separates the diagram into two regions: above it,

the efficiency set by the energies is greater than the Carnot efficiency, and con-

densation can never occur. It emerges immediately below this line for γ → 0,

where condensation is supported by an infinitesimal power flow from the working

medium. In this limit the threshold for condensation corresponds to the condition

that the entropy changes of the hot and cold reservoirs balance,

e2
Tc

=
e3 − µ

Th

. (4.26)

For non-zero γ, condensation requires finite, and therefore irreversible, power

flows from the working medium, which will produce a lower-than-Carnot efficiency

for given bath temperatures. The phase boundary therefore departs from the

reversible line; the non-zero γ implies that the temperature difference Th − Tc

required to drive condensation is increased, as it must overcome the loss.

Another way of looking at the nonequilibrium effects of γ in the threshold is by

looking at the inversion required for condensation. Figure 4.4 shows the second

and third diagonal terms of the density matrices ρ and ρ̃. Before threshold,

because Nc = 0, the elements of the two matrices coincide. At the threshold, the

condensate field emerges, resulting in a mixture of the two excited states, and

ρ̃22 and ρ̃33 acquire the same value. Comparing Figs. 4.4(a) and (b), a larger γ
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Figure 4.5: Size of the condensate as a function of the temperature of the cold (a)
and hot (b) baths for various temperatures of the hot bath, and chemical potentials,
respectively. A second order phase transition is observed from the normal state with
Nc = 0 to a condensed state with non-vanishing occupation.

requires a larger inversion to overcome the loss, and hence a higher temperature

for the hot bath. In the condensed phase, the population of the excited states of

ρ increases with Th, but the inversion ρ33 − ρ22 is constant.

To determine the steady-state occupation in the condensed state we solve

Eq. (4.22) using the steady-state calculated numerically. This incorporates the

dependence of the dressed-state energies and wavefunctions on the condensate

occupation, which provides the nonlinearities, beyond Eq. (4.25), that are needed

to stabilize the condensate at a finite density. Results are shown in Fig. 4.5, as

functions of the two bath temperatures.

Considering first the dependence on Th, we see that the condensate size in-

creases rapidly with Th once the threshold is crossed, and then saturates or de-

creases. This is expected from the occupation of the hot bath at the energy of

the upper level (≈ e3). If we consider the equilibrium of the upper level and the

hot bath only, its population will be (1 + e−βh(e3−µ))−1, which is negligible until

kTh ∼ (e3 − µ), at which point it rapidly grows before saturating at 0.5. The

small decrease could be explained by noting that γ↓
h, approximately proportional

to (1 + nh(e3)), increases with temperature due to the stimulated emission into

the hot reservoir. This will broaden the line and hence, as expected from Eq.

(4.25), reduce the gain. Such a mechanism has been shown to produce an upper

critical threshold, i.e., a maximum Th, in the three-level laser model [91].

The dependence of the condensate size on Tc can be understood analogously

in terms of the thermal occupation of the cold bath, i.e., the phonons. Below the
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Figure 4.6: (a) Total in-scattering rate into the condensate as a function of its size,
and (b) Equilibrium size of the condensate as a function of the light-matter coupling
strength. We use red when considering a Lorentzian and blue when considering a
constant phonon spectral density. The rate reaches a maximum value for both spectral
densities, however, the Lorentzian shape of the spectral density causes a reduction in R
for large condensates.

critical temperature the condensate occupation increases smoothly, and plateaus

at very low temperatures. The critical Tc arises here from the requirements

that the lower state of the 3− 2 transition should be depopulated sufficiently to

generate inversion – in other words, the phonons must cool the high-momentum

excitons, here represented by the pump and the idler states, to a low temperature

so that the idler population is small. The saturation at low temperatures arises

from the assumption of a single energy gap for the phonon relaxation, which

implies that the equilibrium idler population is effectively zero for temperatures

kTc ≪ e2.

4.3.2 Effects of the internal structure of the reservoirs

Fig. 4.6(a) shows the total scattering rate into the condensate, MR(N), in the

steady-state, as function of the condensate size N . This shows the existence of

a maximum power output of the three-level system. Such maxima are general

features of the three-level heat engine [18], caused by the energy-dependence of

the scattering rates, which are sampled at the dressed-state energies ẽ2,3 with

splitting ∼ Ω when Ω ≫ ∆. In Ref. [18] the existence of a maximum power

was attributed to the frequency-dependence of the hot bath occupation function.

Although this thermal factor will produce such an effect in general, it cannot ex-

plain the particular peak in Fig. 4.6, since here kTh is much larger than the energy

shifts at the maximum power point. It arises, instead, from the spectral func-
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Figure 4.7: In-scattering rates with ∆ = 0.3 meV and E0 − e3=0 (black solid), 0.33
meV (blue dotted), -0.2 meV (orange dotted). The red curve is the loss rate. These
parameters lead to in-scattering rates with a convex region (black solid and orange
dotted) and discontinuities (blue dotted and orange dotted). Such forms give rise to
first-order transitions and bistability (see text).

tion of the cold (phonon) environment, which we have modelled as a Lorentzian

of width gph. When N = 0 the dressed-state energies lie at the peak of this

Lorentzian, but they move away as Ω ∼
√
N increases, reducing the emission

rate of phonons into the environment and slowing the cycle. This interpretation

is consistent with the result for a flat phonon spectral density, shown for compari-

son. Although the assumption of a Lorentzian spectral density for the phonons is

not necessarily realistic, the heat baths relevant for polariton condensates do have

spectral structure. This can be expected to lead to a maximum power once the

condensate nonlinearities become comparable to either the scale of the structure

or the temperatures.

Fig. 4.6(b) shows the size of the condensate as function of the light-matter

coupling strength. As a consequence of the energy shifts caused by the coupling

with the field, the size of the condensate has a sharper peak if the phonon spectral

density is a Lorentzian (red) than if it is constant (blue). In the first case, the

energy shifts affect both the spectral density and the Bose function Eq. (4.10),

while in the second case only the Bose function is affected.

In some cases there are additional phenomena which can arise from the non-

trivial spectral densities of the baths. Fig. 4.7 shows the gain as a function of

condensate size for three different sets of parameters, revealing two unexpected

effects. The first is the presence of discontinuities in the steady-state, either
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connecting a region of zero gain to non-zero gain, or causing a sudden drop in

the gain. These arise from the interplay between the energy shifts of the driving

and the spectral density of the hot bath, which we have assumed to have a step-

function onset at energy E0. The dashed-blue curve arises in a situation where the

upper level of the heat engine lies just below the hot bath, e3 < E0, so that there

is no population of the upper level in the absence of the condensate, and hence

no gain. However, as the condensate size increases the upper dressed state, ẽ3,

moves to higher energies, and crosses E0, at which point gain appears. A related

situation, shown by the orange dotted curve, appears if e3 starts just above E0.

In that case, while the two dressed states start in the band, as the condensate

occupation increases the lower-energy one drops below E0, and the gain suddenly

decreases. The second, more subtle, effect is also visible in this curve, as well as

the black curve, which corresponds to the case where e3 starts exactly at E0. This

is the presence of a convex part of the gain curve at small N . We suggest this

is because there is also a small positive detuning here, so that the upper dressed

state is composed mostly of |3⟩ in the limit N → 0. However, as the splitting Ω

reaches the detuning ∆, this component of the upper dressed state – which is the

only one pumped by the hot bath at this point in the curve – begins to reduce

significantly, suppressing the gain. We note this convex form of R(N) implies

the transition is first-order, with the crossing point solving MR(N) = γN first

appearing at a non-zero N . A first-order behavior can also be expected from the

physics of the step-like curve which, for the more realistic case of a smoothly-

increasing spectral density, will become a smooth but convex R(N). In addition,

we expect these forms to lead to bistability of the condensed states, since they

have two intersections with the loss curve.

The physics of these effects lead us to suggest they could be achieved experi-

mentally by constructing a system in which the source of the pairwise scattering,

i.e. the bottleneck state, lies in a region where either the population or spectral

density of the exciton reservoir increases with increasing energy. A natural way

to do this would be to use resonant pumping at an energy above the pairwise

resonance. We note that, although we have assumed a thermal population, the

expressions for the rates, Eqs. (4.10) and (4.11) or (4.12) and (4.13), can be used
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Figure 4.8: Net output power (top row) and efficiency (bottom row) of a steady-state
condensate, as functions of the temperature and chemical potential of the hot bath (left
column), and of the coupling strengths to the two baths (right column). The chemical
potential is measured relative to the lowest state of the pump reservoir, E0, and the
efficiencies are normalized by the Carnot efficiency. The net output power grows if Th

or (E0−µ) increase and has stronger dependence on the coupling strength with the cold
than with the hot bath. The efficiency shows only a weak dependence on the parameters
considered.

also in the non-thermal case.

4.3.3 Thermodynamic figures of merit

Figure 4.8 shows some results for the steady-state power output and efficiency

of the condensate. The white regions denote the non-condensed phase, and the

colors depict the net power Pout −Pin, and net efficiency −(Pout −Pin)/Qh, in the

steady-state. The two plots in the left column show the effects of varying the hot

bath temperature and chemical potential, while the right column shows the corre-

sponding effects of varying the coupling strengths. The net power increases with

increasing hot bath temperature, in line with the condensate occupation shown

in Fig. 4.5. However, while the condensate occupation increases with increasing

chemical potential, the net power output decreases. This is because although
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increasing µ increases the cycle rate and hence the gross power, ωR = ωγN/M ,

it also increases the work input, giving an overall decrease in the net power,

(ω − µ)R. Considered as functions of the coupling strengths, the net power out-

put increases significantly with an increasing coupling to the cold bath. However,

the power output depends only weakly on the hot bath coupling parameter, and

can even decrease as it increases. We suggest that the weak dependence arises

because, for the temperatures chosen, the cycle rate is limited by emission into

the cold bath rather than absorption from the hot one. This emphasizes the

need for rapid phonon thermalization in the high-momentum excitons, in order

to drive condensation (see Fig. 4.1).

The efficiency, as a function of temperature and coupling constants, is shown

in the lower two panels of Fig. 4.8. It is shown relative to the Carnot efficiency,

which explains most of the apparent dependence on the temperatures; the energy

shifts are small for these parameters, so that η is well approximated by Eq. (4.24).

The efficiency at the threshold is below the Carnot efficiency due to the finite loss

rate. Since the efficiency is determined almost entirely by the energy levels, there

is only a very small effect of the coupling strengths.

4.3.4 Modes of operation of the thermal machine

So far, we have considered condensation in the regime ω > µ. Here the work

output per cycle, ω, exceeds the work input, µ, so that condensation is only

possible with the conversion of heat to work. The condensate in this case operates

as a heat engine, and requires a higher temperature for the exciton reservoir than

for the phonons. However, if ω < µ the work output per cycle, ω, is less than the

work input per cycle, µ, so the machine operates not as a heat engine, but as a

dissipator or refrigerator. In these modes heat is not converted to work, as in a

heat engine, but rather the excess work, µ − ω, is dissipated as heat. To avoid

confusion we here use Tx and Tph to refer to the temperatures of the exciton and

phonon reservoir, instead of the subscripts denoting hot and cold.

To understand condensation at the different possible modes of the thermal ma-

chine we calculate the phase diagram by changing the chemical potential around
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Figure 4.9: Phase diagram of polariton condensation as a function of the phonon tem-
perature and the chemical potential. The horizontal red line corresponds to the tem-
perature of the pump bath Tx = 15K, and together with the vertical line at µ = ω
divide the diagram into four quadrants. The first I is not allowed by the second law of
thermodynamics, and the other three correspond the possible modes in which a thermal
machine can operate: II. the refrigeration mode, III. the heat engine mode, and IV. the
dissipation mode. The condensate phase corresponds to the region below the black and
grey lines. With a negligible loss rate, the phase boundary corresponds to a reversible
limit, therefore increasing the chemical potential, which goes from heat engine mode to
refrigeration mode without crossing the dissipative parameter region.

µ = ω, and taking Tx = 15K. In Fig. 4.9 the red lines divide the parameter region

in four, which can be classified according to the direction of flow of the net power

and heat current. For the regions (I) and (II) Tx < Tph, meaning that energy

is flowing from a colder to a hotter reservoir. This can happen as long as the

net power is being input into the system, and the machine is in the refrigeration

mode (II). The situation corresponding to quadrant (I) violates the second law

of thermodynamics, so condensation can never happen in that parameter region.

The regions (III) and (IV) are such that Tx < Tph, and heat flows from hot to

cold, therefore are both allowed. (III) corresponds to the heat engine mode and

(IV) to the case in which work is excess dissipated.

The grey lines in Fig. 4.9 correspond to the phase diagrams for different values

of decay rates, where below each line is the condensed phase, Nc ̸= 0, and above

is the normal phase, Nc = 0. The phase boundary of a perfect microcavity (i.e.,

γ → 0) is a reversible limit and, therefore, does not cross the dissipative region

(IV).
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Figure 4.10: Phase diagram of condensation for ω < µ = 1.002 eV, as a function of
the temperatures of the exciton Tx and phonon Tph reservoir, for three different values
of decay rates. The area below each curve corresponds to the parameter region where
condensation can occur. The red line corresponds to the reversible limit of the thermal
machine, and indicates the phase boundary when γ → 0.

Fig. 4.10 shows the phase diagram of condensation varying Th when ω−µ = 2

meV. The condensate occurs in the region below and to the right of the curves,

and it can be seen that at the onset of condensation Tph > Tx. The excess work

here is deposited as heat in the higher-temperature reservoir, corresponding to a

flow of heat against the temperature gradient. The dashed line corresponds to

Tx = Tph, so that in the region below this the excess work is dissipated in the

lower-temperature reservoir.

4.4 Conclusions

In summary, we have argued that a driven-dissipative condensate is a form of heat

engine, and as such requires consideration of both a hot and cold bath. We con-

sidered in depth the case of a microcavity polariton condensate, and constructed

a minimal heat-engine model that captures the key processes involved in conden-

sation. Our results show how condensation is determined by the temperatures of

both the hot (exciton) and cold (phonon) bath, and that the temperature differ-

ence between these must exceed that required in the reversible limit in order to

overcome the polariton loss. They also emphasize the importance of rapid cooling

in the high-momentum exciton states, in order to maintain effective scattering

into the condensate. The maximum power output of the condensate shows ef-

fects of the spectral densities of the environment, and the formation of dressed

states, which can also produce unusual phenomena including a first-order phase
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boundary and bistability.

Our results provide guidance for extending the regimes and systems which

support condensation, and our methods could be extended to consider other ex-

amples such as the condensation [4] and thermalization [92] of photons. Fur-

thermore, it would also be interesting to explore the reversed operation of the

heat-engine and the possibilities for phonon refrigeration [93].

One extension of our work would be to include a distribution of energies for

the states in the working medium, i.e. inhomogeneous broadening. In this case

the gain, given by Eq. (4.25) and appearing in the threshold Eq. (4.22), would

be replaced its average over the broadened line. While this would modify the

details of the phase boundary, and make condensation more difficult due to the

dispersion of the gain over different frequencies, we would not expect it to have

dramatic effects unless the broadening becomes comparable to the scale of the

dispersion relation. Small broadenings could, however, modify some of the details

of the results in the nonlinear regime, where they would be relevant in comparison

to the energy shifts Ω or features in the bath spectral densities. We have found

such effects in preliminary work; for example, the peak in Fig. 4.6 is replaced,

over the range shown, by a plateau, if the levels e2 and e3 are broadened by 2 meV

while keeping e3 − e2 fixed.





Chapter 5

Photon Condensation

IN WHICH WE DERIVE NONEQUILIBRIUM THERMODYNAMIC

CONDITIONS ON THE CONDENSATION OF A PHOTON GAS

In the previous chapters, we examined condensation of polaritons, which are par-

ticles resulting from the strong interaction between light and matter. In this

chapter, we continue the analysis of the thermodynamics of nonequilibrium con-

densates by focusing on a gas of photons in a microcavity. Photon condensation

occurs in microcavities where light is only weakly coupled to matter, so the emis-

sion detected from the cavity is that of a bare gas of photons and the interaction

with matter serves primarily to cool the photon gas. Like conventional lasers,

photon condensates produce coherent light emission and therefore are important

for developing all-optical devices, such as transistors and highly efficient light

sources.

Both photon and polariton gases are nonequilibrium systems that require a

constant external source to maintain a steady state against the losses. The par-

ticles interact with a cold environment to thermalise and, if the thermalisation

time is small compared with the particle lifetime, it gives rise to a Bose distri-

bution in the steady state. Although a thermal distribution is not necessarily

reached, continuous thermalisation with a colder reservoir is essential to increase

the occupation of lower energy states.

61
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The mechanisms behind the interaction and thermalisation of photons and

polaritons are fundamentally different. The hybrid nature of polaritons provides

them with a low mass inherited from their photonic part combined with a cross

section derived from their excitonic component. In this way, polariton interactions

occur mainly due to exciton scattering, while, in a photon gas, interactions must

be consistent solely with the characteristics of light. Photons have vanishing

chemical potential and so generally interact without conserving the total number

of particles. This means that when a gas of photons is cooled, it loses energy by

particles escaping instead of reducing its temperature, which sets a challenge for

achieving thermalisation.

Nonetheless, thermalisation can occur in microcavities where photons interact

weakly with a material by absorption and re-emission. In this way, the total num-

ber of excitations (which includes the photons and the excited molecules in the

material) is conserved and thermal equilibrium can be reached while controlling

the effective number of photons in the quantum gas. Thermalisation has been

observed in both a dye-filled microcavity [94], and GaAs semiconductor micro-

cavity [3]. Inside the microcavity, the longitudinal mode of light is frozen, and

the transversal modes constitute a two-dimensional gas with energy and mass

determined by the length of the cavity. The medium absorbs and remits the

photons, acting like a reservoir with which the photons thermalise. In the case

of a dye-filled microcavity, features such as heat capacity and fluctuations have

also been explored [95, 96].

In the following, we investigate photon condensation in a dye-filled microcav-

ity. Because of the large cavity lifetime with respect to the thermalisation time,

photons can reach an equilibrium Bose-Einstein distribution in a steady state.

However, in this chapter, we argue that, despite the presence of an equilibrium

steady state, one cannot entirely ignore the nonequilibrium nature of the pro-

cess. As in the previous chapter, we point out that condensation occurs in a

steady state in which particles and energy are supplied from a pump and lost

as they escape from the condensate, so the system operates as a thermal ma-

chine, constrained by the requirement of positive entropy production. This sets

the threshold and, as we shall see, subsumes the usual criteria for equilibrium
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condensation.

A theoretical model using rate equations for the populations of photons and

the degree of excitation of the dye molecules has shown that, for realistic param-

eters, the steady state distribution of photons is thermal as long as the photon

modes are near resonance with the dye (up to −200THz of detuning) [5, 97]. We

use this model as a starting point and show how it leads to an interpretation of

the condensing photon gas as a thermal machine. Next, we extend this model

to consider thermal pump sources. We study a toy model of a photon gas with

two energy levels and explore the effects of pumping the microcavity at different

energies. These results suggest that the pump can be manipulated to produce

condensation from different sources. In particular, we investigate sunlight as a

source, and show that condensation can be achieved from sunlight harvesting.

While the required temperature is large T > 1500K, the coupling with the ther-

mal source can be arbitrarily small. The efficiency with such pump is lower than

the one in which the pump affects the population of the dye energy levels directly.

Our analysis requires only that the Kennard-Stepanov relation is obeyed by

the radiative rates of the material that mediates the photon thermalisation.

Therefore, it can be extended to other systems such as semiconductors, in which

photon condensation has also been demonstrated [3, 98].

5.1 A model of photon condensation

In this section, we review the model of photon condensation proposed by Kirton

and Keeling [5]. The model is inspired by an experiment conducted at room

temperature, with a microcavity made of two curved mirrors and filled with a

dye solution (typically rhodamine 6G) [94]. Because of the confinement, the

photon modes acquire a cutoff energy ω0 and behave as a two-dimensional gas.

The relevant energy scales and processes considered in the model are displayed in

a schematic cartoon of the system in Fig. 5.1(a). The transverse photon modes

are equally spaced with energies ωm = ω0 +mϵ and degeneracy gm = m+1. The

dye molecules are treated as two-level systems with energy splitting ωd and are

coupled to a bosonic state corresponding to a rovibrational mode. The vibration
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Figure 5.1: (a) Illustration of the dye-filled microcavity. The dye molecules are treated
as two-level systems with dressed states controlled by vibration modes. The energy
splitting between the states in each manifold is Ω, and γ is the relaxation rate. The
dye is affected by the incoherent pump Γ↑/↓ and radiative emission and absorption rates
Γ
e/a
m . The lifetime of the cavity is 1/κ. (b) Rates of emission and absorption of the dye

for different photon modes. The photon energy is scaled in relation to the molecular
gap δm = ωm − ωd.

states are modelled as modes of a harmonic oscillator with creation operator b†

and frequency Ω. These vibration states are strongly coupled to the electronic

state of the dye, with the interaction being parameterised by the Huang-Rhys

factor S and emission and absorption rates Γ
e/a
m into and out of the photonic

mode m.

We denote am the annihilation operator of each photonic mode, σi the Pauli

operators corresponding to the i-th dye molecule, g the coupling strength of the

photon-dye interaction and write the Hamiltonian as

H =
∑
m

ωma
†
mam +

∑
i

ωd

2
σz
i + g

∑
m,i

(
amσ

+
i + a†mσ

−
i

)
+ Ω

(
b†ibi +

√
Sσz

i (bi + b†i )
)
.

(5.1)

The first and second terms correspond to the free energy of photons and dye

molecules, respectively. The third term is the light-matter interaction, where

the rotating wave approximation was made to ensure the conservation of the

excitation number. The last term corresponds to the interaction of photons with

the phonons in the dye. We only take one phonon mode (per dye molecule)

into account, but the calculation can be extended to consider more vibrational
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modes [97]. The dye-phonon coupling is strong, but it can be dealt with using a

polaron transformation H → U †HU to eliminate the vibration degrees of freedom,

where U = exp
[∑

i

√
Sσz

i (bi − b†i )
]
. The resulting Hamiltonian is

H =
∑
m

ωma
†
mam +

∑
i

ωd

2
σz
i + Ωb†ibi + g

(
aσ+

i Di + a†σ−
i D

†
i

)
, (5.2)

where Di = exp[2
√
S(b†i − bi)] are displacement operators.

In the polaron basis, the interaction can be understood to link the absorption

(emission) of a photon to the excitation (decay) of a dye molecule with a certain

displacement. This corresponds to exciting a particle from one of the lower states

of the dye to one of the upper ones depicted in Fig. 5.1. The coupling constant

g can be treated perturbatively, resulting in an evolution governed by the master

equation
˙̂ρ = −i[H̃0, ρ̂]−

∑
i,m

{
κ

2
L[am] +

Γ↑

2
L[σ+

i ] +
Γ↓

2
L[σ−

i ]

+
Γe
m

2
L[a†mσ

−
i ] +

Γa
m

2
L[amσ

+
i ]

}
ρ,

(5.3)

where the symbol L corresponds to Lindblad dissipators. We have added radia-

tive decay with rate κ and excitation (decay) due to an incoherent pump source

with rate Γ↑ (Γ↓). The last two terms correspond to the emission and absorption

of photons by the dye, obtained with the Born-Markov and secular approxima-

tions on the interaction term in Eq. (5.2). These emission and absorption rates

Γe
m = Γ(−δm) and Γa

m = Γ(δm) are functions of the detuning δm = ωm − ωd, and

are obtained from the Fourier transform of the retarded correlation function of

displacement operators broadened by the incoherent pump (for more details see

[5, 97]), Γ(δ) = 2Re[K(δ)], where

K(δ) = g2
∫ ∞

0

dt⟨D†
i (t)Di(0)⟩e−(Γ↑+Γ↓)|t|/2e−iδt. (5.4)

They are plotted in Fig. 5.1(b) and, for small frequency detuning, they follow the

Kennard-Stepanov relation Γe
m

Γa
m
= e−βdyeδm with βdye being the inverse temperature

of the dye. At larger frequency detunings the incoherent pump acts as a white

noise, affecting the emission to absorption rates.
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The first term in Eq. (5.3) corresponds to the unitary dynamics of a renor-

malized Hamiltonian

H̃0 =
∑
m,i

δ̃ma
†
mam + ηma

†
mamσ

+
i σ

−
i , (5.5)

with energy shifts given by ηm = Im[K(−δm)−K(δm)] and δ̃m = δm+Im[K(δm)].

Following [97] we can neglect this term because, for small light-matter coupling,

it does not affect the equation of motion used to describe the system.

In Fig. 5.1 and throughout the chapter we use realistic parameters based

on [97], by considering a microcavity at room temperature Tdye = 300K with 109

dye molecules with energy splitting ωd = 558.3THz, lowest mode detuning δ0 =

−100THz, cavity mode decay rate κ = 100MHz, frequency of the rovibrational

mode Ω = 5THz, light-matter coupling strength g = 1GHz, Huangs-Rhys factor

S = 0.5, relaxation rate γ = 50THz, decay of excited electronic state Γ↓ = 1GHz.

However, we have considered a smaller cavity mode spacing of ϵ = 0.25THz,

following the experimental value in [4].

We can calculate the population dynamics by considering a large number of

dye molecules Nd and making a semi-classical approximation on the number of

photons per mode nm = ⟨a†mam⟩. This leads to the rate equations

ṅm(t) = −κnm +Nd [Γ
e
m(nm + 1)pe − Γa

mnm(1− pe)] , (5.6)

ṗe(t) = −Γtot
↓ pe + Γtot

↑ (1− pe), (5.7)

where pe is the probability of the dye being on the excited state, and the total

rates of excitation and decay of the two level system are:

Γtot
↑ = Γ↑ +

∑
m

gmΓ
a
mnm, (5.8)

Γtot
↓ = Γ↓ +

∑
m

gmΓ
e
m(nm + 1). (5.9)

Figure 5.2 shows the evolution of the distribution of photons calculated with

Eqs. (5.6) and (5.7) for values of pump rate Γ↑ below and above the condensation

threshold. Starting with a microcavity empty of photons, the pump excites the
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Figure 5.2: Logarithm of the population occupation of photons Pm = log10(gmnm) for
different times, with time towards the steady-state for a Γ↑ (a) below and (b) above the
threshold. The insets show the time evolution of the population in the ground state,
P0.

dye molecules, and the early time distributions reflect the bare fluorescence spec-

trum dominated by photons in resonance with the dye. With time, as the emission

and absorption processes occur repeatedly, thermalisation begins to happen. The

thermalisation takes longer for the modes that are further away from resonance

because the emission and absorption rates are lower at those frequencies. In fact,

thermalisation can even break down if the cavity is such that the lower energy

modes have scattering rates comparable to the losses [97].

When the cavity losses and pump rates can be neglected, the steady state of

Eqs. (5.6) and (5.7) is such that

nm + 1

nm

= eβdyeδm
Γtot
↓

Γtot
↑

, (5.10)

which allows us to define an effective chemical potential for the photon gas such

that e−βdyeµ =
Γtot
↓

Γtot
↑

. While in the thermodynamic limit, condensation is expected

to happen when µ = δ0, in the following we consider a finite system in which the

chemical potential only approaches δ0, and the total number of photons is

Nph =
1

6

(
π

ϵβdye

)2

. (5.11)
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5.2 Nonequilibrium thermodynamics: heat engines

and the second law

In this section, we show that although photons can reach a condensed equilibrium

distribution in steady state, their nonequilibrium nature still provides information

about the threshold condition. Because of the energy and particle fluxes on the

steady state of the quantum gas, the condensate formation has thermodynamic

constraints. In its condensed state, the system operates as a thermal machine

whose output work is coherent light. As in the case of polaritons, condensa-

tion must respect the second law of thermodynamics, and so it requires positive

entropy production.

In the experiment, an energy source excites the dye, generating excitation

and a non-radiative decay. This can be identified as a hot reservoir in con-

tact with the two-level system, with inverse temperature βh defined by the rate

e−βhωd =
Γ↑
Γ↓

. The dye repeatedly emits and reabsorbs photons with rates that

follow the Kennard-Stepanov relation, so the photons thermalise with the phonon

temperature. Therefore, phonons can be seen as a cold reservoir. Furthermore,

by the same argument of that of the last chapter, the interaction between the dye

and the photon ground state will be work if the state is macroscopically occupied.

Using Eqs. (5.6) and (5.7) we obtain the rate of particles into (γe) and out of

(γa) the condensate mode

γe

γa
=

Γe
0 pe

Γa
0 pg

=
Γe
0 Γtot

↑

Γa
0 Γtot

↓
. (5.12)

The second equality is obtained by substituting the steady state values of the

electronic occupation. This equation is equivalent to Eq. (5.10). To achieve

condensation the emission rate must balance the absorption rate and the losses,
γe

γa
≥ 1.

Using the conservation of the total number of particles in the steady state
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∑
m gmṅm = 0, we find an expression for Γtot

↑ and substitute in Eq. (5.12)

γe

γa
=

Γe
0

Γa
0

(
Γ↑

Γ↓
− Nph κ

Nd pg Γ↓

)
= e−βdyeδ0

(
e−βhωd − Nph κ

Nd pg Γ↓

)
. (5.13)

We can associate an effective temperature βeff to the transition and write e−βeffω0 =
γe

γa
. Taking the logarithm and approximating κ ≈ 0 gives

βeffω0 = βdyeδ0 + βhωd +
Nph κ

Nd pg Γ↑
. (5.14)

This expression connects the physics of condensation to that of a heat engine.

The left-hand side can be interpreted as the entropy increase in the ground state

when a particle is added to it. Taking the limit of κ → 0 the terms on the right-

hand side correspond to the flow of entropy per cycle in the working medium of

a thermal machine in contact with two reservoirs [46]. Specifically, the first and

second terms correspond to the entropy change in the working medium due to the

exchanges of energies δ0 and ωd with the reservoirs with inverse temperature βdye

and βh, respectively. Equation (5.14) has three relevant energy quanta, thereby

we can map it to the thermodynamics to that of a three-level heat engine, as in

Fig. 5.3(a). The threshold for condensation
γe

γa
= 1 corresponds to Teff = ∞.

This is in accordance with the definition of heat and work we have been using [15]

in which work is energy exchanged reversibly. The threshold for condensation is

the reversible limit of the heat engine, where the Carnot limit is achieved

T rev
h = −Tdye

ωd

δ0
. (5.15)

If κ ̸= 0, the threshold requires that the emission into the condensate mode

not only balances the absorption but also the loss rate, so
γe

γa
> 1. This is

analogous to the requirement of inversion in a laser. The last term in Eq. (5.14)

can be interpreted as an additional entropy change in the working medium due

to the flow of particles in the system. In this case, the threshold temperature of

the pump is higher than the one given by Eq. (5.15).

Figure 5.3(b) shows the steady state number of particles in the ground state
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Figure 5.3: (a) Schematic illustration of the three-level heat engine described by Eq.
(5.14). (b) Number of photons in the ground state and total number of photons in the
microcavity as a function of the temperature of the hot reservoir (pump). (c) Total
number of photons in the excited states of the microcavity as a function of Th. The
thermodynamic requirement for condensation, i.e., the reversible limit, is depicted as a
red line. Above the threshold, the ground state becomes macroscopically occupied, and
the number of particles in the excited states saturates to a maximum.

and the total number of particles in the photon gas as a function of the tem-

perature of the hot reservoir (pump). The two curves are indistinguishable to

the eye, so we also show their difference in Fig. 5.3(c). The red line shows the

reversible limit of the heat engine. In the rest of the chapter T rev
h will be plotted

as a vertical red line in graphs of Th as reference. We take a small but realistic

value of decay rate for the cavity κ = 100MHz, so the phase transition happens

near, but not precisely, at the reversible point.

Note that even though there are more particles in the gas with a hotter pump,

at the condensed state, the difference Nph − n0 maintains a constant value. This

shows that the excited photon states are fully occupied above the threshold, and

any additional particle goes to the ground state.

5.3 Condensation pumped by a thermal source of

light

In this section, we examine the effects of modifying the pump by incorporating

thermal sources, such as sunlight. Studies have shown that a dye-filled cavity

can cool photons generated by a thermal source, resulting in a decrease in phase-

space volume; however, condensation has not yet been observed under these con-

ditions [92]. Our aim is to investigate the influence of a thermal pump in order
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to determine effective approaches for achieving condensation.

We treat the thermal pump as the result of an interaction with a blackbody

with inverse temperature βh. The equations of motion, (5.6) and (5.7), become

ṅm(t) = κ
[
e−βhωm(nm + 1)− nm

]
+N [Γe

m(nm + 1)pe − Γa
mnm(1− pe)] , (5.16)

ṗe(t) = −Γtot
↓ pe + Γtot

↑ (1− pe). (5.17)

In this case the pump affects ṅm directly, instead of ṗe. To distinguish and

compare the two experimental scenarios, we refer to the first as a photon-pumped

and the second as a dye-pumped microcavity. Here, the total rates Γtot
↓/↑ are

entirely due to the interaction of the dye with light. We split these to account

for the interaction with the condensate mode separately:

Γtot
↑ =

∑
m=0

gmΓ
a
mnm = Γa

0n0 + ΓS
↑, (5.18)

Γtot
↓ =

∑
m=0

gmΓ
e
m(nm + 1) = Γe

0(n0 + 1) + ΓS
↓. (5.19)

To study separately the possible effects of a thermal pump, we start with a

simplified model of a photon gas with only two energy levels. Next, we extend

the model to the case of a multimode blackbody source pumping many modes

of light. We compare the efficiencies of the dye-pumped condensate presented in

the last sections with a condensate pumping on the photon energies by a multi-

mode source. Here, we establish theoretical conditions for condensation in solar-

pumped dye-filled microcavity that could indicate a pathway to an experimental

realisation.

5.3.1 A two-level photon gas

In the case of a dye-pumped photon gas, we showed that only three energy levels

are relevant in the calculation of the thermodynamic threshold. This suggests that

we can investigate some of the effects of different energy pumps by considering

a few-level photon gas. We use a toy model where the photons can only occupy

the ground state and another state that is affected by the pump.
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Figure 5.4: Steady-state behaviour of the two-level photon gas.(a) Number of particles
in the condensate Nc and in the extra level Ns as a function of the temperature of
the hot reservoir, with the extra level having energy detuning δm = 5meV (solid), and
δm = 100meV (dashed). The grey line shows the reversible limit, of thermal machines
with energies 0, ωs, ωs − ω0. (b) Number of particles in the condensate and (c) in the
extra level for various energies of the extra level.

The dynamics of the dye-photon system are given by Eqs. (5.16) and (5.17),

with the index m accounting for 0 and the additional level. The different choices

of the extra level affect the energy gaps and the total number of modes of light,

as the degeneracy grows linearly with the energy of the level.

Figure 5.4 shows the steady-state behaviour of the two-level photon gas. In

(a), the number of particles in the “condensate” Nc and in the extra level Ns

are shown as a function of the temperature of the hot reservoir for two different

choices of levels with energy detunings δm = 5meV and δm = 100meV, in solid

and dashed lines respectively. The grey lines show the reversible limit of a three-

level heat engine with energy levels 0, ωs, ωs − ω0. The one on the left is that of

the case with the largest energy detuning.

A condensation threshold cannot be clearly defined for such a small system,

however, the curves show a saturation of the occupation of the excited level

above the reversible limit. This mismatch between the reversible limit and the

saturation point can be attributed to both the finite size of the system and the

cavity losses, which we have taken to be κ = 0.01ps−1 here. Figs. 5.4(b) and
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Figure 5.5: (a) Number of photons in the ground state and total number of photons in
the microcavity as a function of the temperature of the hot reservoir (pump). (b) Total
number of photons in the excited states of the microcavity as a function of Th. The
reversible limit is depicted as a red line for comparison. The phase transition happens
smoothly, and above the threshold, the ground state becomes macroscopically occupied,
and the number of particles in the excited states saturates.

(c) show the steady-state number of particles in the condensate and in the extra

mode, respectively, varying the energy of the extra mode and fixing Th = 6000K.

A comparison between the two results in Fig. 5.4(a), and the curve shown

in Fig. 5.4(b) suggests that when pumped at larger energies, condensation has

a lower threshold and higher condensate fraction. The increased degeneracy of

the higher energy modes may be one of the sources of this effect, however, the

non-monotonicity of the curve in Fig. 5.4(c) suggests that there might be other

effects coming into play.

5.3.2 Solar-pumped multimode model

In this section, we continue to explore the effects of pumping the microcavity

with thermal sources, studying a multimode pump described by equations Eqs.

(5.16) and (5.17), with m = 0, ..., 800.

Following the same steps as for the dye-pumped case, we calculate the number

of photons in the condensate, the total number of photons and the evolution of the

distribution to the steady state. Those results are shown in Fig. 5.5 and Fig. 5.6.

For comparison, the red line shows the reversible limit T rev
h of Eq. (5.15). The

total number of photons in Fig. 5.5(a) shows a phase transition that happens

for a critical temperature above the reversible one, and the curve is noticeably

smoother. The saturation of the excited photon states is reached at ≈ 2000K (see
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Figure 5.6: Logarithm of the population occupation of photons Pm = log10(gmnm) for
different times, up to the steady-state for a temperature Th (a) far below the threshold
(Th = 1000K), (b) below, but near the threshold (Th = 2000K), where a macroscopic
population starts to emerge, but the gas is not yet condensed, and (c) above the thresh-
old (Th = 6000K). The insets show the time evolution of the population in the ground
state, P0.

Fig. 5.3(b)), proving that a condensed state can exist at temperatures smaller

than the sun Tsun ≈ 5800K. However, the number of particles in the gas is orders

of magnitude lower than the dye-pumped condensate, and so the curves of Nph

and n0 can be distinguished in the figure. That is because when pumping each dye

molecule with a certain rate, the energy flux into the system is multiplied by the

number of molecules (109), while in the multimode pump, the rate is multiplied

by the number of photon modes (∼ 3× 105) and so the multimode photon pump

effectively adds fewer photons into the system.

The evolution of the photon distribution is shown in Fig. 5.6 for three different

hot temperatures: (a) 1000K, lower than the threshold of condensation with the

dye pump, (b) 2000K, higher than the threshold of condensation with the dye

pump, but lower than the threshold of condensation in this case and (c) 6000K,

higher than the threshold for condensation. The pump generates photons, and

so, at early times, the distribution reflects the first absorption of the dye, which

is greater near resonance. For longer times, the repeated absorption and re-

emission lead to thermalisation. Because the rates depend on the frequency,

thermalisation is faster in modes near resonance, and the ground state is the last

to reach a steady state. From left to right, the steady-state distributions are that

of a normal thermal gas, of a gas with a macroscopic population of photons spread

over many modes, and of a Bose condensed quantum gas. The insets show the

time evolution of the ground state population. In Fig.(c) condensation happens
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Figure 5.7: Steady state of a photon condensate pumped on the dye populations (purple)
and a multimode source of blackbody radiation (green) at temperature Th. From top to
bottom, the graphs show the total number of particles (solid) and number of particles
in the ground state (dashed) on a log scale, the probability of finding a dye molecule in
the excited state, the chemical potential of the photon gas, and efficiency of the thermal
machine. In the bottom figure, the dashed line shows the Carnot efficiency, and the
purple (green) dotted lines are the calculated (estimated) limit of the dye-pumped
(photon-pumped) condensate. The red vertical line is the reversible limit of the dye-
pumped condensate, where the efficiency reaches Carnot’s. The multimode pump has
a less sharp phase transition, with higher Th at the threshold. The efficiency does not
achieve the Carnot limit, remaining below the other case even after the threshold.

after ∼ 5ns, where a jump is seen in the evolution of P0.

Following a similar procedure as to the dye-pumped condensate, we find the

rate of emission by absorption of the dye into the condensate mode

γe

γa
=

Γe
0

Γa
0

{
ΓS
↑

ΓS
↓
− κ

Nd pg ΓS
↓

[
n0 − e−βhω0(n0 + 1)

]}
. (5.20)

Associating an effective temperature to the transition e−βeffω0 =
γe

γa
, taking the

logarithm and making the approximation κ ≈ 0, we get the entropy increase in
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the ground state when a particle is added to the condensate

βeffω0 = βdyeδ0 − log

(
ΓS
↑

ΓS
↓

)
+

κ

Nd pg ΓS
↑

[
n0 − e−βhω0(n0 + 1)

]
. (5.21)

This expression is similar to Eq. (5.14), however, the interpretation is not as

straightforward. The first term is the entropy change corresponding to energy

transfer from the working medium to the cold bath. Motivated by fluctuation

theorems [46] the second term can be interpreted as the entropy increase in the

working medium due to energy being transfer to all modes of the photon gas

but the ground state. This involves entropy and energy exchange with both hot

and cold reservoir, and so a break down of the expression as in Eq. (5.14) is not

possible. The threshold when κ → 0 is when the left hand side of Eq. (5.21)

is zero, that is, when
ΓS
↑

ΓS
↓
= e−βdyeδ0 . However, this is not the reversible limit of

the heat engine. As discussed below, the thermal pump excites many modes of

light, allowing transitions that cause heat transfer from the hot to the cold bath

without producing work.

In Fig. 5.7, we show, in purple and green, the behaviour of the dye-photon

system as a function of the temperature Th of a dye-pumped and photon-pumped

microcavity, respectively. As in Figs. 5.3 and 5.5, the graph at the top shows the

total number of particles in the gas (solid line) and the number of particles in

the ground state (dashed line), but on a logarithmic scale. Because κ ≪ ΓS
↑, the

threshold of the dye-pumped condensation coincides with the reversible line of the

three-level heat engine (vertical red line), where we see a jump on both Nph and

n0. When the photon gas is pumped with sunlight, the total number of particles

is not as large as that of a dye-pumped cavity, but it can reach the threshold

value Eq. (5.11) shown as a horizontal red line. In this case, the threshold is

when
√

Nph ≈ n0, at approximately 2000K.

At temperatures above the threshold, both the probability of finding a dye

molecule in the excited state and the chemical potential of the photon gas reach

the estimated value for a condensate (calculated assuming the thermodynamic

limit). However, the temperature Th required for condensation is higher for a gas

with a thermal pump and the phase transition is smoother.
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The bottom graph of Fig. 5.7 shows the efficiency of condensation, i.e., the

work output divided by the heat input in the system. For the dye-pumped mi-

crocavity (depicted in purple) the efficiency is

ηres =
κω0n0

Ndωd(Γ↑pg − Γ↓pe)
=

ω0R
0
out

ωdRin

, (5.22)

where R0
out is the rate at which particles escape from the condensate and Rin the

rate at which energy is added to the dye. The steady state condition is that

the rates of particles in and out of the cavity are the same, but because in the

condensed state n0 ≈ Nph, we can consider that the particles escaping the cavity

are almost entirely in the ground state, and the efficiency can be approximated

to ηres =
ω0

ωd

. This is depicted as a purple dotted line in the figure.

In the thermal multimode setup, the efficiency (depicted in solid green) is

ηmm =
−ω0(n0 − e−βhω0(n0 + 1))∑

m=1 gmωm(nm − e−βhωm(nm + 1))
=

ω0R
0
out∑

m=1 ωmRm
in

, (5.23)

where Rm
in is the rate at which photons are added to the m-th energy level. To

compare with Eq. (5.22) we can write the frequencies in terms of the detuning

with respect to ωd, which gives

ηmm ≈ ω0

⟨δ⟩+ ωd

, (5.24)

where ⟨δ⟩ =
∑

m Rm
inδm∑

m Rm
in

, and again because most particles are in the ground state,

in the steady state
∑

m Rm
in ≈ R0

out. We use the rates Rm
in calculated in a well

developed condensed state (Th = 5000K) to estimate ηmm, and plot this in a

green dotted line in Fig. 5.7. Because ⟨δ⟩ > 0, Eq. (5.24) gives an efficiency

lesser than Eq. (5.22). We suggest this is because, when the hot reservoir couples

to multiple transitions, it enables energy to be exchanged between the hot and

cold reservoir without producing work. This can be seen in Figure 5.8, where we

show the heat currents when the cavity has a source pumping the dye (a) and

the photon modes (b). The reversible line (red vertical line) is at the threshold

temperature of operation of the dye-pumped thermal machine T rev
h . However, at
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Figure 5.8: Energy currents of a (a) dye-pumped and (b) with a photon-pump micro-
cavity. In red and blue are the energy current to the hot, and cold baths, respectively,
and in black the output condensate power. The red vertical line is the reversible limit
of Eq. (5.15), which sets the threshold temperature of the heat engine. At the same
temperature, in the multimode photon-pumped cavity there is heat flowing from the
hot to cold baths, but no output power.

this same temperature, the multimode pump produces energy currents from the

hot to the cold baths without output power, i.e, without condensation. We show

Carnot’s efficiency as the dashed black curve. It is equal to the efficiency of the

dye-pumped condensate at the threshold (red line).

Due to the smoother nature of the phase transition, it becomes more diffi-

cult to clearly identify a condensation threshold when the system is driven by a

multimode source. We follow the approach taken in [97] in which the threshold

is defined by the point at which the number of photons in the cavity reaches

the critical value in Eq. (5.11) predicted for the equilibrium Bose gas. In equi-

librium, this would correspond to a ground state population of n0 = 1/βϵ to

leading order on ϵ. In Ref. [97] the authors generalise this definition to account

for nonequilibrium cases in which the occupation of the ground state is not the

highest nmax = max{nm} = 1/βϵ. This approach has the advantage of distin-

guishing macroscopic (n0 ∼ Nph) and microscopic (n0 ∼ 1) occupation of the

ground state.

In Fig. 5.9 we show how the threshold, defined in two slightly different ways,

depends on the coupling κ. In the top row it is defined as the point at which

the total number of photons in the cavity reaches the critical value given by Eq.

(5.11). In the bottom row, the threshold is when the population of the maximally

occupied state reaches nmax = 1/βϵ. These two definitions are equivalent in the
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Figure 5.9: Threshold behaviour as a function of the coupling with the light source. In
the top row, the threshold is defined by the point at which the number of photons reaches
Nthreshold (see Eq. (5.11)), and in the bottom row it is given by nmax = max{nm} =
1/βϵ. (a) and (c) show the Th at threshold, and (b) and (d) show the number of particles
in the ground state, in the most occupied state and the square root of the total number
photons. At higher coupling strengths, the systems is further away from equilibrium,
so the ground state does not have the highest occupation.

thermodynamic limit (ϵ, κ → 0), [97], however in this finite system they differ

slightly.

In Figs. 5.9 the threshold temperature of the pump varies by ∼ 4K in (a)

and ∼ 130K in (c) for the values of coupling strength considered. Despite this

difference, in reference to the absolute values of temperature these are small

variations (∼ 0.002% and ∼ 5%), which shows that the coupling has a weak effect

on the phase boundary. Figures (b) and (d) show the number of particles in the

ground state, in the most occupied state, and the square root of the total number

photons, for the same values of κ. At higher couplings the system gets away

from equilibrium, so the ground state is not the one with the highest occupation.

We conclude that, in an experimental setting, the coupling can be taken to be

arbitrarily small, while the temperature of the source should be kept large.
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5.4 Conclusions

In this chapter, we showed that the nonequilibrium nature of a photon gas pro-

vides important information on the condensation threshold. Because of the en-

ergy and particle flow, a photon condensate operates as a heat engine, like a laser

or polariton condensate, converting energy from the pump into work from the

condensate. Therefore, as any thermal machine, it must respect the laws of ther-

modynamics and has its operation constrained by the rate of entropy produced.

This constitutes a way to identify the threshold that is somewhat different from

that broadly used for equilibrium BEC.

We focused on a model of a dye-filled cavity and linked the threshold crite-

rion to the entropy balance in a reversible heat-engine cycle. We then extended

the model to different possibilities of pump, first looking at a model of a two-

level photon gas, and later at a multimode model pumped with sunlight. The

results show how condensation could be achieved with thermal sources and that

it could occur for excitation with sunlight. Such a solar-pumped condensate is an

all-optical heat engine with a predicted efficiency of up to 0.8. However, our re-

sults suggest that the spread in the energy of the pump leads to lower efficiency.

Additionally, we concluded that condensation can happen for arbitrarily small

couplings with the light source, as the temperature of the source is the defining

parameter to reach the threshold.

We considered a dye-filled cavity for definiteness, but our results are general

and can be applied to other systems with rates obeying the Kennard-Stepanov

relation. In further investigations, it would be interesting to link our findings to

the thermodynamic analyses of the efficiency of conventional photovoltaic cells,

such as the results in [99]. Additionally, we could continue to explore the model

of a two-level photon gas to understand the precise role of the degeneracy and of

other possible effects.



Chapter 6

Universality of coherent phenomena

IN WHICH WE ANALYSE THE CONNECTION BETWEEN

CONDENSATION, LASING, AND SYNCHRONISATION

In the previous chapters, we have shown that both polariton and photon conden-

sates can be described using a three-level model of a heat engine. This model was

first suggested by Scovil and Schulz-DuBois [14] to describe a maser and further

discussed in other analyses of light amplification [15, 17, 18, 100]. In this way, our

work supports the notion that these condensates are fundamentally analogous to

laser phenomena. This equivalence had already been accepted in the literature

in view of the fact that they emerge from the same effect, i.e., phase symmetry

breaking, which implies common properties such as the macroscopic occupation

of the ground state and a large range of phase order and spatial coherence [11].

While equivalent in certain fundamental aspects, the distinction between BEC

and laser terminology is useful for describing the extent to which non-equilibrium

effects influence the system. The usual categorisation involves the rate between

the typical thermalization times, τth and the lifetime τ0. If τth/τ0 << 1, as is

the case of photons in a dye-filled cavity, the system is able to thermalize with

its environment and is characterised as BEC. On the other hand, if τth/τ0 >> 1

then amplification can happen, but particles escape before thermalizing with the

environment, and the system is said to be in a laser phase. Moreover, there is a

81
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third regime, where the two-time scales are comparable (but τth ≤ τ0), and the

system reaches a quasi-thermal equilibrium distribution; that is the typical case of

polaritons which we call non-equilibrium condensates [8]. The temporal coherence

is expected to increase with the particle-particle interactions and decrease with

the particle lifetimes. Therefore, these different regimes have different degrees of

temporal coherence, being greater for a condensate than for a laser [11].

In terms of state characterisation, it’s important to note that there is no clear-

cut transition between these different types of condensates in an experimental

setting. Additionally, from a theoretical point of view, there is no symmetry

breaking when moving from one regime to the other, so the states should not be

considered to be in different phases of matter. In conclusion, for our purposes, the

terms ‘condensate’ and ‘lasing’ will be used interchangeably from now on to refer

to a state characterised by a macroscopic occupation of polaritons or photons.

While both photon and polariton lasers result in light amplification, they are

distinguished by the particles involved in their stimulated interactions. Photon

lasers rely on the stimulated emission of photons, while polariton lasers employ

stimulated scattering of polaritons. This difference might seem trivial, but it

reflects the degree of light-matter coupling. For instance, a gas of polaritons in a

microcavity at low density emits light from its many modes, acting as an LED.

As the pump is increased and the density grows, the system transitions to a laser

mode with coherent emission from the ground state of the polariton spectrum.

Further density increase leads to phase-filling effects that diminish the exciton-

photon coupling, causing the coherent emission to be a pure result of photonic

stimulation. The threshold for this second transition is named Mott density [101].

Currently, photon lasers are widely used and technologically well-established.

However, polariton lasers have recently emerged as a promising energy-efficient

source of coherent light due to their threshold density being many order magni-

tudes lower than the fundamental limit set for semiconductor photon lasers [11].

In particular, electrically driven polariton lasers have been achieved at cryogenic

temperature in GaAs microcavities [9] and at room temperature in a GaN sys-

tem [10]. Electrically pumped devices have the advantage of being more ex-

perimentally controllable. Therefore, this achievement has profound practical
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implications paving the way for the next generation of laser technology [101].

Both polariton condensates and general laser phenomenon have been mod-

elled using the Dicke model, which consists of a Hamiltonian that describes a

set of atoms (two-level system) interacting with light in a microcavity [102, 103].

When the rotating wave approximation is considered in the light-matter interac-

tion, the model is sometimes called the Tavis-Cummings model. While the full

Dicke model exhibits a superradiant phase transition, the Tavis-Cummings model

cannot produce superradiance when losses are considered. Instead, it can reach

a coherent laser state provided that there is atomic inversion. The connection

with superradiance has been analysed by Kirton and Keeling [104], where the

transition from standard lasing to Dicke superradiance is obtained by changing

the balance of the rotating and counter-rotating terms in the light-matter inter-

action. The authors obtained a phase diagram, showing that there is always a

normal phase separating the two distinct regimes of coherent light emission.

Furthermore, the lasing phenomenon has also been linked to the phase-locking

in arrays of underdamped Josephson junctions through a Dicke-type model, using

the collective electronic polarisation as an order parameter [105]. The energy

of the ensemble of oscillators, considered as two-level systems, is shown to be

minimal when their polarisation is mutually coherent.

In this chapter, we aim to investigate the same connection but using an en-

semble of three-level heat engines. Even though the term synchronisation has a

broader use in the literature, we use it here interchangeably with phase locking.

We start by looking at a mean-field description of the light-matter coupled equa-

tions and interpreting the effects of loss in its phase diagram. To do so we extend

the Dicke model to a set of three-level systems. This is a classical limit of the

dynamical system, but gives a starting point to the interpretation of definitions

that become less clear on the quantum regime. Next, we simulate the asymptotic

limit of the ensemble of identical heat engines coupled to a field and calculate

their degree of synchronisation using measures proposed in the literature [106].
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Figure 6.1: Cartoon illustration of a microcavity with an ensemble of three-level heat
engines. The photon decay rate of the cavity is κ, and each three-level system is coupled
to a hot and cold bath. The hot bath couples the levels 1 and 3, the cold bath couples
the levels 1 and 2, and the interaction with the photons couples with the levels 2 and 3.

6.1 Mean-field approach

We consider an ensemble of N three-level heat engines in a microcavity, schemat-

ically represented in Figure 6.1. Each system interacts with different independent

reservoirs described via the Lindblad master equation. The set of heat engines

produces coherent light that competes with a photon loss due to the finite cavity

lifetime. The Hamiltonian of the ensemble plus a photonic mode is

H =
N∑
j=1

2∑
i=0

Ei |i⟩j ⟨i|j + ωa†a+
g√
N

∑
j

[
a† |2⟩j ⟨3|j + a |3⟩j ⟨2|j

]
, (6.1)

where a is the bosonic annihilation operator of photon, Ei the energy of each level,

g is the strength of the light-matter interaction and we performed the rotating

wave approximation on the last term. The interaction energy couples the two

excited states of each system and is rescaled by a factor of
√
N to guarantee a

sensible description of the thermodynamic limit, i.e. a finite value of energy per

heat engine. We define E1 = 0, ∆E = E3 − E2, Ē =
E3 + E2

3
and rewrite the

Hamiltonian

H = ∆E
∑
j

λ3,j + Ē
√
3
∑
j

λ8,j + ωa†a+
g√
N

∑
j

[
a†λ−

1,j + aλ+
1,j

]
. (6.2)

The Gell-Mann operators λk (k = 1, ..., 8) are an analogous version of the spin
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1/2 operators and are given by

λ3 =
1

2


1 0 0

0 −1 0

0 0 0

 , λ8 =
1

2
√
3


1 0 0

0 1 0

0 0 −2

 , λ1 =
1

2


0 1 0

1 0 0

0 0 0

 .

(6.3)

The transition operators connecting the two excited states of the three-level sys-

tem are constructed in a similar way as to the spin 1/2, that is, λ+
1 = (λ−

1 )
T with

λ1 =
λ−
1 + λ+

1

2
.

To simplify the problem, we follow a similar strategy to the one employed by

Fowler-Wright et. al. [107] in the context of organic polaritons and use mean-

field theory to reduce the problem to a single thermal machine interacting with

a coherent field. In the limit of a large number of three-level systems N ≫ 1,

the bosonic operator a can be replaced by its average value, and each system

experiences the interaction with a mean-field Hamiltonian

H3ls =


e3

g√
N
⟨a⟩ 0

g√
N
⟨a⟩∗ e2 0

0 0 0

 . (6.4)

Therefore, the evolution is described by coupled equations for each heat engine

(indexed by j) and the average field ⟨a⟩

ρ̇j = −i[H3ls(⟨a⟩), ρj] +Lh(ρj) +Lc(ρj)

˙⟨a⟩ = −(iω + γ)⟨a⟩ − i
g√
N

∑
j

⟨λ−
1,j⟩.

(6.5)

If the ensemble is in an unsynchronised state, the sum of the average transition

operators ⟨λ−
j ⟩ is of order

√
N , and ⟨a⟩ is of order one. On the other hand, if the

phase of each operator is locked at the natural frequency ω, the sum is of order

N , meaning that ⟨a⟩ will be of order
√
N , which is a macroscopic state [105].
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Taking the mean-field approximation over the spin 1 operators leads to

˙⟨λ−
1,j⟩ = −(i∆E + Γ−)⟨λ−

1,j⟩+ 2i⟨a⟩⟨λ3,j⟩
g√
N
, (6.6)

where Γ− = δ−h + δ−c is the sum of the decay rates of the transitions coupled to

the hot and cold baths. Then, we can write the average of all individual spin

operators as S−
1 =

∑
j⟨λ

−
1,j⟩/N and S−

k =
∑

j⟨λk,j⟩/N , (k = 1, ..., 8) to get

Ṡ−
1 = −(i∆E + Γ−)S−

1 + 2i⟨a⟩S3
g√
N

˙⟨a⟩ = −(iω + γ)⟨a⟩ − ig
√
NS−

1 .

(6.7)

Now, the problem has been reduced to two coupled equations from which

we can understand the underlying dynamics. The frequencies at which S−
1 and a

oscillate are determined by their natural frequencies and the coupling term, which

will enforce a tendency to synchronisation. Meanwhile, the loss terms Γ− and γ

need to be overcome so that the oscillators have a non-zero mean-field magnitude.

In other words, two obstacles must be overcome to achieve a synchronised state.

First, the losses need to be overcome allowing the systems to oscillate along

their respective limit cycles. In mathematical terms, this is a Hopf bifurcation.

Secondly, the interaction needs to be strong enough to ensure phase locking of

the spin frequency with the field.

Decomposing each variable in its polar complex form S−
1 = |S−

1 |e−iθλ and

⟨a⟩ = |a|e−iθa gives

˙|S−
1 | = −Γ−|S−

1 |+ 2
g√
N
|a|S3 sin(θa − θλ)

˙|a| = −γ|a|+ g
√
N |S−

1 | sin(θa − θλ)

(6.8)

and
θ̇λ = ∆E − 2g

|a|√
N |S−

1 |
S3 cos(θa − θλ)

θ̇a = ω + g

√
N |S−

1 |
|a|

cos(θa − θλ),

(6.9)

which can be used two analyse the two conditions for synchronisation separately.

The dynamics of the phase difference ∆θ = θa − θλ coincides with the classical
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equation of the Kuramoto model explained in chapter 2

∆̇θ = ∆ω + J sin(∆θ + π/2) (6.10)

where ∆ω = ω −∆E, and the effective coupling is

J = g

(
|S−

1 |
√
N

|a|
+ 2S3

|a|
|S−

1 |
√
N

)
. (6.11)

In the steady state ˙|a| = ˙|λ−
1 | = 0, so the effective coupling J reduces to J =

g

√
2S3

γΓ− (γ + Γ−) and g =
1

sin(∆θ)

√
γΓ−

2S3

. At the normal state (and threshold)

the value of S3 depends uniquely on the thermal equilibration with the reservoirs

and is given by

S3|ns =
e−βhe3 − e−βce2

2(1 + e−βhe3 + e−βce2)
. (6.12)

The condition for synchronisation in the Kuramoto model is cos(∆θ) = ∆ω/J ,

which gives the critical coupling

g2c =
γΓ−

2 S3|ns

(
1 +

(
∆ω

γ + Γ−

)2
)
. (6.13)

In the limit where both the radiative and non-radiative decay vanish, this is the

classical Arnold tongue, demonstrated in chapter 2, in which gc ∝ ∆ω. Substi-

tuting Eq. (6.13) on the expression for J at the steady state we get that the

critical effective coupling follows

J2
c = (∆ω)2 + (γ + Γ−)2. (6.14)

This result has fundamental implications for the nature of the laser transi-

tion. It shows that, indeed, the classical limit of the laser phenomenon is in-

trinsically connected to the classical description of synchronisation. However

the effective coupling depends on the magnitude of the spin and field. Be-

cause of the losses considered, the phase boundary acquires another dimension,

and the typical “tongue" shape becomes a ‘cone’ in a space with dimensions

(x, y, z) = (∆ω, γ+Γ−, Jc), described by Eq. (6.14). The classical Arnold tongue
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corresponds to the section on the cone that crosses γ + Γ− = 0. With a simple

algebraic manipulation, we can also see that the Kuramoto condition is always

achieved

∆ω/Jc =

√
1−

(
γ + Γ−

J2
c

)2

< 1, (6.15)

which shows that in fact, the existence of a limit cycle is the defining constraint

of the problem. In other words, we conclude that as long as |S−
1 |, |⟨a⟩| > 0, the

oscillators are synchronised.

An interesting point to make is that if the light-matter interaction is in a

regime in which the rotating wave approximation cannot be taken in the Hamil-

tonian of Eq. (6.1), the coupled equations (6.5) and (6.6) will have an additional

term
˙⟨a⟩ = −(iω + γ)⟨a⟩ − 2i

g√
N

∑
j

Re⟨λ−
1,j⟩,

˙⟨λ−
1 ⟩ = −(i∆E + Γ−)⟨λ−

1,j⟩+ 4i⟨λ3,j⟩
g√
N
Re⟨a⟩.

(6.16)

The evolution of the phase difference is not a Kuramoto-type equation, but given

by

∆̇θ = ∆ω +
J(t)

2

[
sin(∆θ + π/2) + sin(θa + θλ + π/2)

]
. (6.17)

Because of the additional sin that emerges from the rotating terms of the inter-

action, the system cannot synchronise, but it has a phase transition to a super-

radiant phase in which the spin and field have no oscillation [104].

6.2 Synchronisation in the quantum regime

In the classical limit, synchronisation is well-defined in terms of deterministic

phase trajectories (see chapter 2). However, in the quantum regime, fluctuations

that are neglected in a mean-field theory become significant. As a result, the

transitions from an unsynchronised to a synchronised regime become less sharp,

shifting the focus from whether a system is synchronised or not to the extent

or degree of its synchronisation. In this way, while quantum oscillators offer a

valuable framework for exploring the impact of quantum correlations on collective

behaviour, concepts such as limit cycles, synchronisation, and entrainment require
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redefinition.

Van der Pol oscillators are a nonlinear oscillator with damping that varies

with the amplitude of its oscillation. Because of the clear connection with its

classical analogue, they are the most canonical object of study of quantum syn-

chronisation [108–112]. Considering a van der Pol oscillator with wave packet

initially localised near the position predicted for its classic limit cycle with mini-

mum uncertainty, it will evolve to a delocalized wave packet along the trajectory

of the limit cycle. This can be viewed in terms of the Wigner distribution of the

oscillator, which evolves from a small ball to a ring-shaped form with the radius

of the classical trajectory. This defines a quantum limit cycle with no phase

preference. When an external driving is turned on, the distribution acquires a

maximum that rotates along the classical trajectory [113].

In other quantum systems, unfortunately, the analogy is not as simple. Taking

the case of spin systems, it has been debated if qubits can even possess valid limit

cycles [114]. However, today, it is broadly accepted that they not only can be

in a limit cycle but also synchronise with both an external driving and with

another qubit [115–118, 111, 119]. In the context of few-level systems, spin 1 has

also been investigated [120, 106], and in particular synchronisation of thee-level

thermal machines [121, 122].

The authors in [121] use a quasiprobability distribution in phase space, named

Husimi-Kano Q-representation, to measure phase localisation and argue that be-

cause thermal states are diagonal, they do not possess any phase preference, and

so can be said to be in a limit cycle. This definition contrasts with the point

of view presented in the last section, where we argue that the thermal normal

state of a three-level heat engine is just a ‘trivial’ non-oscillating state and that

the limit cycle is achieved with the Hopf bifurcation. Because the conditions for

synchronisation are less restrictive than the conditions for having a limit cycle,

the first is only achieved when the second can exist. The difference between

the two points of view is rather subtle but can be summarised into the question

of whether a stationary state should be considered a limit cycle. That said, the

authors connect the thermodynamic behaviour of a heat engine with synchronisa-

tion, showing that the output power is bounded by the degree of synchronisation



6.2. SYNCHRONISATION IN THE QUANTUM REGIME 90

a) b)

c)

Figure 6.2: Steady-state simulation of an ensemble of N = 109 identical three-level heat
engines interacting with a field. The absolute value of the normalised field operator as a
function of the cavity lifetime in a logarithmic scale (a). The population of the excited
levels as a function of the light-matter coupling for cavity lifetimes of τ = 100ps (b) and
τ = 200ps (c) is given by the temperatures of the hot Th = 200K and cold Tc = 10K
baths at the normal state and tends towards equalisation as g increases. The grey
vertical line shows the critical coupling predicted by the mean-field theory Eq. (6.13).

in the system. This result presents an important step in the connection between

coherence and synchronisation, which has been further explored with a Liouvilian

analysis [122].

We use Eqs. (6.5) to analyse the synchronisation of an ensemble of N identical

three-level heat engines. We take the same parameters as for the polariton heat

engine, with the third energy level shifted by the chemical potential, and consider

that each system is in equilibrium with its reservoirs at an initial time when the

field is perturbed. Figure 6.2 shows the long time results of the simulation. In (a),

the absolute value of the normalised field operator shows a phase transition as the

cavity lifetime is increased. Figures 6.2(b) and (c) show the excited populations as

a function of the light-matter coupling strength g for two different cavity lifetimes.

At the normal phase, populations depend solely on the choice of temperatures

(Th = 200K and Tc = 10K). However, for g above the threshold, the photon

interaction establishes a tendency for equalisation of p2 and p3. The grey vertical

line shows the phase boundary predicted by the mean-field theory Eq. (6.13),

which agrees with the point at which population inversion becomes affected by

the field.



6.2. SYNCHRONISATION IN THE QUANTUM REGIME 91

Figure 6.3: Colour maps of the average magnitude of the normalised field (a) and spin
(b) as a function of the light-matter coupling g and the detuning ∆. The threshold
follows Eq. (6.13), depicted as a blue dashed line, and shows the expected behaviour of
the quantum Arnold’s tongue.

Figure 6.3 shows the long-time behaviour of the absolute value of the nor-

malised field operator and the absolute value of the average operator S−
1 as a

function of the coupling strength and the detuning ∆ = (e3 − e2) − ω, with the

blue dashed line demarcating the phase boundary Eq. (6.13). The colour map

in (a) shows the expected behaviour of a Arnold tongue (or ‘cone’); however,

(b) has a peak and decreases for higher values of g. The mean-field Eqs. (6.8)

explain this behaviour. While high light-matter coupling implies a higher mag-

nitude of a, it also reduces the inversion and consequently implies a smaller S3.

These two effects compete against each other, causing S−
1 to have a maximum

value as a function of g. It is important to point out here that the Lindblad

equation used to describe the effects of the reservoirs does not account for the

energy shifts caused by the coupling with a, and, therefore, is only appropriate

when these energy shifts, ∼ g|a|/
√
N are small compared with the variation in

spectral densities and occupation functions. As we saw in Fig. 4.6(b), if these

shifts were considered, the magnitude of the field would also have a maximum

with respect to g.

In contrast with the classical Arnold tongue Fig. 2.3(b), the phase bound-

ary on Fig. 6.3 does not touch the horizontal axes. This is because even with

zero detuning, the system needs to overcome the losses γ and Γ to enter the

laser/synchronised state. Near the threshold J ∝ g, and so the shape of the

phase boundary is a section of the “synchronisation cone” set by Eq. (6.14).

In the field of quantum synchronisation, a key focus of investigation is identi-



6.2. SYNCHRONISATION IN THE QUANTUM REGIME 92

Figure 6.4: Potential quantifiers of synchronisation. (a) Normalised trace distance
from the diagonal state. (b) Normalised relative entropy of synchronisation. (c) Von
Neumann entropy.

fying the optimal measures for quantifying it. The choice of a suitable quantifier

is often system-dependent as it must be measured in relation to the particular

set of limit cycles that the system of interest can achieve. The phase space distri-

bution has been used to measure phase concentration as a quantifier of synchro-

nisation [114, 121, 116]. Information-based measures have been proposed both

as tools for quantifying synchronisation and as means of linking it to quantum

correlations [120, 109, 118, 111, 123, 124, 115].

To investigate the connection of phase locking with coherence and entangle-

ment, we show the long-time behaviour of two synchronisation measures proposed

in [106] and the von Neuman entropy in Fig. 6.4. The first two are normalised

to be 1 at maximum. The synchronisation measures are constructed by defining

a metric and taking the minimum distance D between the state and all possible

limit cycles

Ω(ρ) ≡ minσ∈ΣD(ρ, σ), (6.18)

where Σ is the set of all limit cycles. The trace distance is given by

DD(ρ, σ) = ||ρ− σ||1 = Tr[
√

(ρ− σ)†(ρ− σ)]. (6.19)

The relative entropy by

DR(ρ, σ) = S(ρ||σ) = Tr[ρ log ρ− ρ log σ]. (6.20)
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Considering the definition of limit cycle used by the authors in [121, 106], the

limit cycle with minimum distance to the state of interest is the diagonal state.

So, these measures become a measure of coherence, with similar behaviour to |S−
1 |.

The von Neumann entropy of the steady-state density matrix presents a different

behaviour, resembling the colourmap of |⟨a⟩|. Its value in the normal state is

defined by the steady-state populations defined by the choice of temperatures for

the thermal reservoirs. In the laser state, the entropy increases, indicating that

the coupling with the field causes a growth of the system-bath entanglement. A

larger entanglement means more information on the system is lost, and so the

process is less reversible.

6.3 Discussion

In this chapter, we extended our analysis of non-equilibrium condensation by

discussing some fundamental aspects of the condensed state and comparing it

to laser phenomena. We used a mean-field theory to establish the connection

with phase locking in a microcavity with an ensemble of three-level heat engines

and a field. We show that the non-equilibrium nature of the system shapes

the phase boundary of condensation into a generalised version of the classical

Arnold tongue; to what we call a synchronisation cone. Because the condition

for synchronisation is weaker than the condition for the existence of a field, the

second sets the conditions required for coherent emission. We also simulate the

long-time dynamics of the system and calculate the measures of synchronisation

proposed in [106].

The Dicke model has also been analysed with approaches that go beyond the

first-order mean-field approximation [103, 125]. However, there is still much to

explore. In further investigations, it would be interesting to look at the effects

of considering an ensemble of non-identical three-level systems, with broadening

over the energy levels, for example.





Chapter 7

Conclusions

In this thesis, we analysed Bose condensation in nonequilibrium quantum gases

from the perspective of quantum thermodynamics. The nonequilibrium nature

of these systems implies that there is a constant flow of energy and particles in

the steady state, which connects condensation to laser phenomenon. We showed

that as for a laser in Scovil’s model [14], these condensates are constrained by the

requirement of positive entropy production.

We focused on optical microcavities where light and matter interact to form

polaritons or photon condensates. Starting with polaritons, we used kinetic equa-

tions to analyse the role of phonon-polariton and polariton-polariton scattering

separately in the build up of a condensate. Using these results we built a three-

level model to describe how a polariton gas, in contact with a non-resonant pump

and a phonon reservoir, can produce work by emission of coherent light. We ob-

tained a phase diagram (Fig.4.3) for condensation and showed that if the system

is close to equilibrium, the phase boundary is defined by the reversible limit of

the heat engine, that is, by the second law of thermodynamics. We analysed the

effects of the internal structure of the pump and phonon reservoir on the phase

transition (Fig. 4.7) and calculated thermodynamic figures of merit (Fig. 4.8).

The results emphasise the importance of rapid cooling in the high-momentum

exciton states, in order to maintain effective scattering into the condensate. Ad-
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ditionally, we analysed the effects of the exciton chemical potential in the opera-

tion of the three-level system, concluding that condensation can also happen in

a dissipative and a refrigeration regime of the thermal machine (Figs. 4.9 and

4.10).

Next, we extended our approach to photon condensates. Using kinetic mean-

field equations we showed that condensation of a photon gas is restricted by the

condition of positive entropy production and it can also be mapped to a model of

a three-level heat engine. We analysed the effects of a thermal pump, first looking

at a two-level model, and later at a multimode model pumped with sunlight. We

showed that condensation by sunlight harvesting can happen (Figs. 5.5 and 5.7)

and that in an experimental setting, one should prefer a hotter light source weakly

coupled to the cavity (Fig. 5.9).

Our results support the idea that nonequilibrium condensates are fundamen-

tally analogous to laser phenomena. Therefore, in the last chapter, we analysed

this connection and linked it with synchronisation. We showed that the nonequi-

librium nature of a microcavity leads to a new dimension in the synchronisation

phase diagram and that the existence of a limit cycle sets the condition for co-

herent emission of light.

Condensation in nonequilibrium Bose gases has various possible implemen-

tations and numerous practical and theoretical applications. Thermodynamics

offers a general and comprehensive framework for analysing the ways in which

particles and energy are allowed to be exchanged. The findings presented in this

thesis use thermodynamics to enhance the understanding of the conditions neces-

sary for condensation in polaritons and photon gases, and offer insights that can

be applied to improve the efficiency of these systems. Furthermore, our work pro-

vides guidance for extending the regimes and systems that support condensation,

and our methods could be extended to consider other examples of nonequilibrium

quantum gases.
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Appendix A

Polariton heat engine: equations-of-motion

This Appendix contains additional equations relevant to the chapter 4. In chapter

4 we analysed the equations for the energy currents between the three-level system

and the hot and cold baths. Here we present the equations-of-motion for the

elements of the density matrix of the three-level system and analyse the limit of

small coupling (or large detuning).

The equations-of-motion for the diagonal elements of the density matrix, in

the bare basis, are given in Eqs. (4.16–4.18). We give here the remaining terms,

considering the contributions from the two baths separately. We use an abbre-

viated notation in which subscripts denote the frequencies at which the spectral

densities and bath occupations are sampled, so that in expressions for the cold

(hot) bath we have Ji = Jc(ẽi), ni = nc(ẽi) (Ji = Jh(ẽi+ω), ni = nh(ẽi+ω)). For

the cold bath we have

ρ̇23|c = −π

2
{[ρ11(J2n2 − J3n3) + ρ33(J3(1 + n3)− J2(1 + n2))] sin θ

+ ρ23[J2(1 + n2)(1 + cos θ) + J3(1 + n3)(1− cos θ)]}, (A.1)
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ρ̇12|c = −π

2
{(ρ12 − ρ21)[J2(1 + 2n2)(1 + cos θ) + J3(1 + 2n3)(1− cos θ)]

+(ρ13 − ρ31)[J3(1 + n3)− J2(1 + n2)] sin θ}, (A.2)

ρ̇13|c = −π

2
{ρ13[J2n2(1 + cos θ) + J3n3(1− cos θ)]

+ ρ21[J2n2 − J3n3] sin θ}. (A.3)

The corresponding expressions for the hot bath are

ρ̇23|h = −π

2
{[ρ11(J2n2 − J3n3) + ρ22(J3(1 + n3)− J2(1 + n2))] sin θ

+ ρ23[J2(1 + n2)(1− cos θ) + J3(1 + n3)(1 + cos θ)]}, (A.4)

ρ̇13|h = −π

2
{ρ13[J3(1 + 2n3)(1 + cos θ) + J2(1 + 2n2)(1− cos θ)]

+ρ12[J3(1 + n3)− J2(1 + n2)] sin θ}, (A.5)

ρ̇12|h = −π

2
{ρ12[J3n3(1 + cos θ) + J2n2(1− cos θ)]}. (A.6)

In the limit θ → 0, the energies of the dressed states reduce to the original

energies, ẽ2 = e2, ẽ3 = e3 − ω, and the equations-of-motion become the standard

Lamb equations for a three-level laser [18]. The population transfer rates become

Rc = 2πJ2(1 + n2)ρ22 − 2πJ2n2ρ11

= γc
↓ρ22 − γc

↑ρ11, (A.7)

−Rh = 2πJ3(1 + n3)ρ33 − 2πJ3n3ρ11

= γh
↓ρ33 − γh

↑ρ11. (A.8)

The dissipative contributions to the equations-of-motion for the off-diagonal ele-
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ments of the density matrix become

ρ̇23 = −1

2
(γc

↓ + γh
↓ )ρ23, (A.9)

ρ̇13 = −1

2
(γh

↑ + γh
↓ + γ↑

c )ρ13, (A.10)

ρ̇12 = −1

2
(γc

↑ + γc
↓ + γ↑

h)ρ12. (A.11)

where a counterrotating term from the cold bath has been neglected in Eq. (A.11).

These expressions describe the decay of the coherences, with the rates related in

the expected way to those of the populations.
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