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Synchronization and spacetime vortices in one-dimensional driven-dissipative
condensates and coupled oscillator models
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Driven-dissipative condensates, such as those formed from polaritons, expose how the coherence of Bose-
Einstein condensates evolves far from equilibrium. We consider the phase and frequency ordering in the
steady-states of a one-dimensional lattice of condensates, described by a coupled oscillator model with nonodd
couplings, including both time-dependent noise and a static random potential. We present numerical results
for the phase and frequency distributions, and discuss them in terms of the Kardar-Parisi-Zhang equation and
the physics of spacetime vortices. We find that the nucleation of spacetime vortices causes the breakdown
of the single-frequency steady state and produces a variation in the frequency with position. Such variation
would provide an experimental signature of spacetime vortices. More generally, our results expose the nature of
synchronization in oscillator chains with nonodd couplings, random frequencies, and noise.
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I. INTRODUCTION

In equilibrium statics and dynamics are related through
the fluctuation-dissipation theorem. Nonequilibrium systems,
however, break this relationship and allow new forms of order-
ing [1,2]. A topical example is provided by driven-dissipative
Bose-Einstein condensates of exciton polaritons [3–5] in one-
dimensional lattices [6,7]. The phase correlations in such
condensates decay exponentially in space [8], as they do in
equilibrium, but are stretched exponentials in time. The cor-
relation functions found in a recent experiment [6] agree with
those predicted by the Kardar-Parisi-Zhang (KPZ) equation,
which is obeyed by the phase of a driven-dissipative conden-
sate [9–14].

Static disorder is ubiquitous in condensed-matter systems,
and often plays a decisive role in their collective behavior. It
can destroy the ordered states present in the clean limit, for
example in low-dimensional magnets [15], and lead to glassy
states, for example in Bose gases [16]. Although disorder
could be expected to play a similarly important role for driven-
dissipative condensates, it has typically been neglected. It
has been considered by some of the present authors [17],
among others [18–21], but we neglected the time-dependent
noise that is important for the coherence properties of the
condensate. In this paper, we evaluate the combined effect
of disorder of strength σ , and noise of strength D, in a
one-dimensional driven-dissipative condensate. We find when
both the noise and disorder are nonzero, σ, D �= 0, the char-
acteristic single-frequency steady state is destroyed, and the
condensate acquires small variations in frequency with posi-
tion. This is because the combination of disorder and noise
leads to a net generation of spacetime vorticity. The inho-
mogeneous frequency—or equivalently chemical potential–of
this nonequilibrium condensate is a fundamental difference
compared with equilibrium.

The physics of driven-dissipative condensates is one of
three closely related problems, with the others being the
synchronization of coupled oscillators [22] and the growth
of interfaces [23]. The driven-dissipative Gross-Pitaesvkii
equation for the macroscopic wave function in a conden-
sate implies that the phase degree of freedom obeys the
KPZ equation [8,9,24,25], originally introduced to describe
a growing interface [26]. The stochastic nature of the gain
and loss process in the condensate gives rise to noise in
the Gross-Pitaesvkii equation, which becomes the standard
spacetime noise term in the KPZ equation, while a random
potential gives rise to so-called columnar disorder in the KPZ
equation [27–29], i.e., an interface growth rate which is ran-
dom in space but fixed in time. For a lattice of condensates,
the Gross-Pitaesvkii equation can be mapped to a coupled-
oscillator model with, in general, both noise and random
frequencies. Unlike the better known and studied Kuramoto
model, this model includes a nonodd (cosine) coupling term,
which plays an important role and allows global frequency
synchronization in large systems [17,30]. Such Kuramoto-
Sakaguchi models were introduced in Ref. [31] which, along
with several more recent works [17,32–34], uses their con-
nection to the KPZ equation. Here, we go beyond our analysis
[17] of synchronization in a Kuramoto-Sakaguchi model with
random frequencies to study the impact of noise in the syn-
chronized state. We find that it generates a small but nonzero
range of time-averaged frequencies, with an unusual activated
dependence related to localization effects. Our results apply
not just to driven-dissipative condensates, but to the many
other systems described by Kuramoto-Sakaguchi models.

The mechanism behind the breakdown of the single-
frequency steady state is the nucleation of spacetime vortices
by noise. Spacetime vortices are the topological defects of a
one-dimensional phase field θ (x, t ), in which the phase winds
by a multiple of 2π around a closed loop in spacetime. They
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are not described by the KPZ equation, which is for a noncom-
pact variable and so ignores topological defects [35,36]. They
have been considered previously [33,37] in the absence of
disorder, shown to modify the KPZ scaling of the correlation
functions at long times, and produce a vortex turbulence phase
which has yet to be observed. In these cases vortices and
antivortices are equally likely, and the resulting states have
no net vorticity on large scales. In contrast, the steady-states
we find have large-scale vorticity patterns, corresponding to
their inhomogeneous frequency profile. Measurements of an
inhomogeneous frequency profile would provide evidence of
spacetime vortices and condensate physics beyond the KPZ
equation.

II. MODEL

We consider a one-dimensional lattice of polariton conden-
sates, in which the condensate phase on the kth lattice site is
θk (t ), with dynamics given by the Kuramoto-Sakaguchi model

dθ j

dt
=

∑
k

Jjk

[
1

α
sin(θk − θ j ) − cos(θk − θ j )

]
+ ε j + η j (t ).

(1)
This model can be derived from the Gross-Pitaevskii equa-
tion describing a lattice of condensates formed in the wells
of a potential [6,17,38], in which case Jjk is the real-valued
Josephson coupling strength between sites j and k, ε j is the
energy per particle of the condensate on site j, and α = �/U
is the gain saturation parameter divided by the interaction
strength. Equation (1) is valid provided the density fluctua-
tions are fast as well as small [17]. Including a dissipative part
to the coupling [39] produces a model of the same form with
a redefinition of the parameters. The dissipative couplings are
small for condensates trapped in the wells of a potential, for
which the tight-binding wave functions can be taken as real,
but can be large for untrapped condensates [40,41]. Such con-
densates also allow the realization of time-delayed couplings
[42], which are beyond the scope of Eq. (1).

We consider the case of nearest-neighbor couplings, which
we take to be uniform and positive, J > 0. This is appropriate
for a regular lattice where the fluctuations in the coupling will
be small compared with its average value. The predominant
source of disorder will then be in the site-energies, ε j , which
we suppose have standard deviation σ . The time-dependent
random driving η, which arises physically from the gain and
loss processes, is Gaussian white noise with strength D, so
that 〈ηi(t )η j (t ′)〉 = 2Dδ(t − t ′)δi j .

While the most direct application of Eq. (1) is to lattices of
coupled condensates, it can also be understood as a general-
ization of the KPZ equation for a single extended condensate
[8,9,24,25] that incorporates the compactness of the phase
θ [37]. In this case the lattice can be viewed as a formal
device that allows vortices to be treated within a phase-only
theory. Conversely, if the phase differences are small, we may
expand the trigonometric functions in Eq. (1) and take the
continuum limit to obtain the KPZ equation with an additional
time-independent random term from the disorder,

∂θ (x, t )

∂t
= Ja2

α

∂2θ

∂x2
+ Ja2

(
∂θ

∂x

)2

+ ε(x) + η(x, t ). (2)

FIG. 1. Phases in a chain of 400 oscillators at the time tJ = 6000
for various noise strengths. α = 1, σ/J = 0.2, and noise strengths
D/J = 0 (red), 0.032 (blue), 0.064 (yellow), 0.128 (purple). Noise
increases from top to bottom in the center of the figure. The zero of
phase is chosen to be that of the first oscillator.

Here a is the lattice constant, which will be set to one in the
following. Using the Cole-Hopf transform Z = eαθ we can
rewrite this as the imaginary-time Schrödinger equation for
a particle in a static and a dynamic random potential

∂Z

∂t
= J

α

∂2Z

∂x2
+ αε(x)Z + αη(x, t )Z

= −H0Z + αη(x, t )Z. (3)

Before discussing the general case of Eq. (1), we recall
some previous results when only one type of disorder is
present. We consider, here and in the remainder of this work,
only the regime α � 1, which is appropriate for polariton con-
densates. In the opposite limit, α � 1, lattice effects dominate
[17] and there is a first-order transition to a disordered state
[33,37].

Without the noise term, Eq. (1) is the Kuramoto-Sakaguchi
model for a one-dimensional system of coupled self-sustained
oscillators with random natural frequencies [31]. In contrast to
the Kuramoto model, the coupling is a nonodd function of the
relative phases. This allows for a globally synchronized state
in which all the oscillators have a single frequency [17,30],
even in the limit of large numbers of oscillators. The syn-
chronized state occurs for σ < σc, at which point there is a
transition to a desynchronized state.

The nature of the synchronized states and the form of
the phase boundary [17,30–32] can be understood using the
mapping to the imaginary-time Schrödinger Eq. (3). Its so-
lution is Z (x, t ) = ∑

n cne−Entφn(x), where φn and En are the
eigenfunctions and energies of the effective Hamiltonian H0.
In the long-time limit Z approaches the ground state of the
effective random potential −αε(x), which is a localized state
φ ∼ e−|x−x0|/ζ , at some position x0, with localization length
[29] ζ ∼ (J/α2σ )2/3. This implies that the state is synchro-
nized in the long-time limit—the phase increases at the same
rate at every point in space—and that the phase profile is a
triangular function of position. An example can be seen in the
topmost curve of Fig. 1.
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The approach to the steady-state can also be understood
in this way, because at late times Z will comprise a few
low-energy localized states, giving rise to a phase profile
comprised of a set of triangular peaks. These grow at slightly
different rates, until eventually only the fastest-growing peak,
corresponding to the ground state of H0, remains. (We take,
without loss of generality, the ground state energy to be
negative).

We can obtain the phase boundary for synchronization [17]
by noting that if the gradients become too large |∂xθ | � 1,

the compactness of the phase becomes relevant, and Eq. (1)
cannot be approximated by Eq. (2). Since the synchronized
state has |∂xθ | ∼ 1/αζ ∼ (ασ 2/J2)

1
3 , it occurs only below a

critical disorder strength, σ < σc ∼ Jα−1/2.
In the case where there is no static disorder, σ = 0,

and Eq. (2), which approximates Eq. (1), becomes the
standard one-dimensional KPZ equation for a growing in-
terface, with θ playing the role of the interface position
(height). The interface is rough [23], with correlation function
C(x, t ) = 〈(θ (x, t ) − θ (0, 0))2〉 ∼ t2/3 f (|x|/|t |2/3), where the
scaling function f (y) is a nonzero constant at y → 0, and
behaves as f (y) ∼ |y| as y → ∞. Since the width of the
interface—corresponding to the range of phases—grows as
θ = √

C(0, t ) ∼ t1/3, the range of time-averaged frequen-
cies decays to zero in the long-time limit: ω = θ/t ∼
t−2/3. The broadening of the interface by noise does not occur
fast enough to give rise to different time-averaged frequen-
cies [33]. This conclusion remains unchanged on considering
spacetime vortices, nucleation of which is expected to lead
to diffusive behavior for the phase differences at long times
[33,37], θ = √

C(0, t ) ∼ t1/2, so that ω ∼ t−1/2.

III. RESULTS

A. Phase ordering and first-order coherence

Figure 1 shows the phases θ j (t ) in a chain of oscillators,
obtained by integrating Eq. (1) using a stochastic Runge-Kutta
method [43]. Discontinuities in the resulting phase profiles,
where neighboring phases differ by multiples of 2π , have
been removed to produce a smooth curve. The highest (red)
curve is a typical result obtained with disorder but without
noise. The disorder strength σ = 0.2J < σc is such that the
long-time solution is synchronized, and takes the form of a
triangular phase profile as discussed above. There are smaller
variations around this overall profile, due to the residual ef-
fects of disorder [27]. This profile is unchanged in time, apart
from an overall shift.

The remaining curves show the effects of introducing in-
creasing amounts of noise on the phase profiles. Qualitatively,
the effect of weak noise is to add time-dependent fluctuations
about the phase profile produced by the disorder. For the
strongest noise shown, the situation is slightly more complex,
with the presence of two large-scale peaks in the solution,
rather than one. This corresponds to the presence of both
the ground state and the first excited state of the effective
Hamiltonian H0 in the solution at this time.

We can use these observations to obtain the behavior of
the first-order coherence function of a lattice of condensates
with both disorder and noise. In polariton condensates, the
coherence function g(1)(x = x − x′,t = t − t ′) is deter-

mined by interfering the light emitted from one position in
the lattice at one time, (x, t ), with that from another position
at another, (x′, t ′) [6]. |g(1)| quantifies the coherence of the
condensates separated by x and time t .

We consider the synchronized state in the regime where
we may take the continuum limit, so that there is a phase field
θ (x, t ) with dynamics given by Eq. (2). Neglecting intensity
fluctuations, in line with our assumptions, we have g(1)(x =
x − x′,t = t − t ′) = 〈eiθ (x,t )−iθ (x′,t ′ )〉, where 〈〉 denotes an
average.

To study the decay of first-order coherence, we write

θ (x, t ) = θ0(x, t ) + φ(x, t ), (4)

where θ0(x, t ) is the steady-state solution in the absence of
noise. We consider experiments done with only one realiza-
tion of the random potential, which is appropriate if the static
disorder arises from imperfections in the structure and only
one structure is used. We also suppose that the measurement
is done after the steady-state is reached. We then have g(1) =
eiθ0(x,t )−iθ0(x′,t ′ )〈eiφ(x,t )−iφ(x′,t ′ )〉, where the relevant average is
over noise or time but not disorder. The first factor does not
fluctuate, and so does not lead to a decay of |g(1)|, which is
entirely due to the second factor. From Eq. (2), φ(x, t ) obeys

∂φ

∂t
= J

α

∂2φ

∂x2
− 2J

(
∂θ0

∂x

)(
∂φ

∂x

)
+ J

(
∂φ

∂x

)2

+ η(x, t )

≈ J

α

∂2φ

∂x2
− 2Jc

(
∂φ

∂x

)
+ J

(
∂φ

∂x

)2

+ η(x, t ). (5)

In the second line we have used the fact that the steady-
state solution θ0 consists of large regions where the slope is
approximately constant, ∂xθ0 ≈ c, and considered one such
region. Equation (5) is then the standard KPZ equation with
a tilted substrate [23], and the second term on the right-hand
side, the tilt, can be eliminated by a Galilean transformation
x̃ = x − 2Jct , t̃ = t . Thus, over each region in the solution θ0,
defined by an approximately constant slope, the statistics of
φ(x̃, t̃ ) and hence, the decay of first-order coherence, is related
to that of the standard KPZ equation.

B. Desynchronization by noise

We now turn to consider the frequencies in the steady-state
of Eq. (1). The frequency of the kth oscillator, averaged over
some long time T , is

ωk = [θk (T + t ) − θk (t )]/T . (6)

This gives a frequency profile, for each realization of the
disorder, whose width may be characterized by the standard
deviation of the ωk , ω. Figure 2 shows the results of nu-
merical calculations of the disorder averaged width, 〈ω〉.
These results are obtained for a chain of N = 400 oscillators,
with J = 1 and α = 1. We use a constant initial condition,
and evolve to a time t = 1500 to allow for the transients,
computing the time-averaged frequencies from the phases a
time T = 1500 later.

The results along the two axes, σ = 0 [8,10,33,37] and
D = 0 [17] are expected from previous works. The state is
frequency synchronized, ω = 0, for any D when σ = 0, and
for σ < σc ≈ 0.4 when D = 0. However, when both noise
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FIG. 2. Standard deviation of the time-averaged frequencies,
ω, for chains of 400 oscillators with static disorder σ , noise
strength D, and α = 1. The frequencies are computed over a time
interval T = 1500/J . Each point is an average of the frequency width
over 32 realizations of the disorder and noise.

and disorder are present we find that ω �= 0, and a range
of time-averaged frequencies emerges in the solution.

The presence of multiple time-averaged frequencies in the
solution can be related to the presence of spacetime vorticity.
We express the phase change of a given site, θi(t + T ) − θi(t ),
as the integral of the derivative dθi/dt . The frequency dif-
ference between two sites i and j, with i > j, can then be
expressed as a line integral around a closed path,

ωi − ω j = 1

T

(∫ T +t

t

dθi(τ )

dτ
dτ −

∫ t+T

t

dθ j (τ )

dτ
dτ

)

= 1

T

∮
ds

dθ

ds
= 2π

T
nv, (7)

which counts the enclosed vorticity, nv . Thus, a nonvanishing
frequency difference is equivalent to a nonvanishing density
of spacetime vorticity. The path in Eq. (7) is a rectangle
starting at (xi, t ) and going in the direction of increasing time
to (xi, t + T ) then, in order, to (x j, t + T ), (x j, t ), and back
to (xi, t ). The integrals along the parts of the path in the
time direction are explicit in the first line of Eq. (7), and we
have chosen a gauge such that the integrals along the space
direction are zero [37]. The integrals and derivatives represent
sums and differences where they refer to a discrete coordinate.

Figure 3 illustrates the relationship between frequency
variations and vortices. It shows the time dependence of the

FIG. 3. Phases in a chain of N = 128 oscillators, without noise
(top panel) and with noise (center panel). Position is along the
horizontal axis, with time along the vertical axes, increasing from
top to bottom. α = 1, σ/J = 0.4, and D = 0 (top) and D/J = 0.07
(center). The colored points in the center panel mark spacetime
vorticity +1 (red) or −1 (yellow). The bottom panel is an en-
largement showing the vorticity in the region of the center panel
marked with the red box, with vorticity +1 and −1 in black
and white.
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FIG. 4. Dependence of the frequency width ω on disorder
strength σ for a chain of N = 400 oscillators with α = 1 (colored
points). The same data is shown on a logarithmic (top) and linear
(bottom) scale. Colors indicate the noise strengths D/J of 0.128
(green), 0.096 (purple), 0.064 (yellow), 0.032 (blue), and 0 (red).
The curves are fits to Eq. (9) (top panel) and Eq. (12) (bottom panel),
as described in the text.

phases with disorder alone (top), and with both disorder and
noise (center). The phase is shown over a single interval of
length 2π using a grayscale, and spacetime vortices appear
as dislocations in the pattern visible in the center panel.
The introduction of noise leads to a state with a range of
time-averaged frequencies, in this case a noticeably higher
frequency in the center of the chain than at the edge. The
colored dots in the center panel mark spacetime vortices with
positive and negative charges shown as different colors, and
the frequency variation along the chain can be seen to arise,
as it must, from the presence of regions with unbalanced
vorticity.

C. Theory of vortex nucleation

Figure 4 shows in more detail the computed frequency
width, as a function of the disorder strength σ , for several
values of the noise D. We now consider the form of these
curves, in the regime σ < σc, and suggest how it can be
understood in terms of vortex nucleation.

For a first approach, we recall that the continuum descrip-
tion, Eq. (2), is based on an expansion of the trigonometric
functions in Eq. (1), and hence becomes invalid when the
phase gradients are too large. This leads us to suggest that

vortices will be generated where the magnitude of the phase
gradient fluctuates to reach a critical value, |∂xθ | = kc. Fur-
thermore, we suggest that the sign of the slope at this point
corresponds to the charge of the resulting vortex. This is
consistent with Fig. 3, where we see that the positive (neg-
ative) vortices tend to occur predominantly in the regions
where there is an overall positive (negative) slope of the phase
profile.

As noted above, the phase profile can be decomposed as
θ = θ0 + φ, and in a region where the slope of the back-
ground is approximately constant, ∂xθ0 ≈ c, the fluctuations
φ obey the tilted KPZ equation, and hence the standard KPZ
equation after a Galilean transformation. Thus, the equal-time
statistics of φ are identical to those of the KPZ equation,
which are known to be unaffected by the nonlinear term
and hence, Gaussian [23]. More specifically, the steady-state
distribution of φ is a Gaussian with zero mean, P[φ] ∝
exp[− J

2D

∫
dx(∂xφ)2]. Since the slopes ∂xθ = ∂xθ0 + ∂xφ ≈

c + ∂xφ, their distribution is this same Gaussian, shifted by
c. The probability of a fluctuation causing the magnitude of
the slope to exceed the critical value kc is then

P(|∂xθ | > kc) ∝ erfc

(
kc ∓ c√

2D/J

)
∼ e−(kc∓c)2J/D, (8)

where the minus and plus signs in the arguments are for
the cases ∂xθ > kc and ∂xθ < −kc, respectively. In a region
with positive (negative) background slope, the first (second)
of these will be exponentially more likely than the other in
the regime of weak noise, and positive (negatively) charged
vortices will predominate. This leads us to expect that a region
of average slope c will have a frequency width proportional to
the vortex generation rate

G ∼ e(2kc−|c|)J|c|/D. (9)

Since the average slope of the background scales as c ∼
1/αζ ∼ (ασ 2/J2)1/3, the exponent is a sum of terms propor-
tional to σ 2/3 and σ 4/3. The curves in the top panel of Fig. 4
are fits to a dependence of this form, which can be seen to give
a good account of the data.

We have, in addition, developed a heuristic argument for
the form of the noise-induced frequency width based on
known results for two coupled oscillators [44]. For a two-site
chain, Eq. (1) gives

d

dt
(θ2 − θ1) = −2J

α
sin(θ2 − θ1) + (ε2 − ε1) + (η2 − η1).

(10)
This is identical to the case of Kuramoto oscillators, since the
cosine term cancels. Equation (10) has a synchronized steady
state for detunings δ = |ε2 − ε1| < 2J/α in the absence of
noise. The noise term nucleates phase slips in this state and
introduces a frequency difference, which can be computed
from the solution of the Fokker-Planck equation [44]. In the
present notation it is,

δω(δ) = δ
sinh(πμ)

πμ
|Iiμ(J/αD)|−2, (11)

where μ = δ/2D, and Iiμ is a Bessel function of imaginary
order.
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To apply this result to the non-Kuramoto chain, we recall
the approximately triangular form of the background solution
θ0, corresponding to the localized ground state of the effec-
tive Hamiltonian H0. This state would also be obtained for
a -function potential of strength related to the localization
length, ε(x) = −(2J/α2ζ )δ(x − x0). More generally, a solu-
tion θ0 of saw-tooth form, arising from several low-energy
states of the random potential, would be obtained from a set
of such δ-function potentials. This suggests associating the
frequency difference δ in the coupled oscillator model with the
strength of these potentials, δ ∼ (2J/α2ζ ) ∼ α−2/3J1/3σ 2/3.
We therefore propose that the frequency width in the chain
is of the form

ω = C1δω
(
C2α

−2/3J1/3σ 2/3
)
, (12)

with δω(δ) given by Eq. (11). The fitting parameter C1 is
introduced to account for the number of sites in the chain
where vortex nucleation occurs. The factor C2 accounts for
the details of the relationship between the localization length
and the other parameters.

The lower panel of Fig. 4 shows a comparison between
Eq. (12) and our simulation results. We have chosen the pa-
rameters C1 and C2 such that this form is close to the data
in the absence of noise. We have then used these values to
plot the result for D = 0.096J . This can be seen to produce
a curve close to the data (purple triangles) for that noise
strength. Both curves deviate from the data in the region well
above the transition, which is expected as we have neglected
vortex-vortex interactions and changes in the number of sites
where vortex nucleation occurs.

IV. CONCLUSIONS

In summary, we have studied the combined effects of noise
and disorder in a one-dimensional chain of driven-dissipative
condensates, described by a Kuramoto-Sakaguchi oscillator
model. The phase profiles, in the regimes of weak disor-
der and noise, consist of triangular forms produced by the
disorder, with additional time-dependent fluctuations due to

the noise. When spacetime vortices can be neglected, these
time-dependent fluctuations will be described by a tilted KPZ
equation. The steady-state contains a single frequency, and
the first-order coherence functions are related by a Galilean
transformation to those obtained in the absence of disor-
der. More dramatic effects appear when spacetime vortices
are considered, which lead to the breakdown of the single-
frequency steady-state and the appearance of small variations
in the frequency along the chain. This is due to the creation
of spacetime vortices by the noise, which is biased by the
currents that are induced by the disorder potential. The re-
sulting frequency width has an unusual form: an exponential
involving fractional powers of the disorder strength, reflecting
the localization length of a quantum particle.

One implication of our work is that measurements of an
inhomogeneous frequency profile would provide a signature
of spacetime vortices. While we have focused on the case
where such frequency variations appear due to the presence of
disorder, we would expect similar effects in other potentials,
since these too will induce currents in the driven-dissipative
condensate that will lead to unbalanced vorticity generation
in different regions of the sample. A straightforward example
would be a lattice with a single site at a different frequency,
corresponding to a δ-function potential in the continuum
model. The mechanism we propose would also be expected
to occur if a supercurrent is generated, in the absence of a
potential, by imposing a phase difference between the ends
of the lattice [21]. In this case the drop in frequency along
the chain corresponds to dissipation in the supercurrent due to
spacetime vortices.
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