Module Template for New and Revised Modules¹

Module NameDeep Learning and its ApplicationsECTS Weighting210 ECTSSemester taughtSemester 1Module Coordinator/sProf. François PitiéIn EcrsOn successful completion of this module, students should be able to:reference to the Graduate Attributes and how they are developed in disciplineOn successful completion of this module, students should be able to:1. Describe the main neural network architectures used in applications today.L. Describe the parameters used in popular Deep Learning software libraries such as Keras.13. Implement neural network applications using python 3 and keras.L. Describe the performance of Machine Learning algorithms and analyse the potential pit falls.L5. Design neural network applications using python 3 and keras.L. Plan and debug neural network models (e.g. detect overfitting and provide a solution to mitigate its effects).L7. Plan and debug neural network models (e.g. detect overfitting and provide a solutions for industry projects that require neural net technology.L8. Answer typical questions from job interviews on Deep Learning.Forduate Attributes: levels of attainment To act responsibly - Enhanced To develop continuously - Enhanced To develop continuously - Enhanced To develop continuously - EnhancedModule ContentThis module is an introduction to Machine Learning with a strong focus on Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex.Deep Learning has recently become a disruptive technology that has been taking over operation all sroarted in deraction around th	Module Code	EEU44C16
Semester taughtSemester 1Module Coordinator/sProf. François PitiéModule Learning Outcomes with reference to the Graduate Attributes and how they are developed in disciplineOn successful completion of this module, students should be able to:1. Describe the main neural network architectures used in applications today.I. Describe the main neural network architectures used in applications today.1. Describe the parameters used in popular Deep Learning software libraries such as Keras.I. Describe the parameters used in popular Deep Learning software libraries today.1. Describe the parameters used in popular Deep Learning algorithms and analyse the potential pit fails.I. Evaluate the performance of Machine Learning algorithms and analyse the potential pit fails.1. Design neural network architectures for a particular application.I. Evaluate the performance of Machine Learning algorithms and analyse the potential pit fails.1. Plan and design solutions for industry projects that require neural net technology.I. Plan and design solutions for industry projects that require neural net technology.1. Plan and design solutions for industry projects that require neural net technology.I. Plan and design solutions for models (e.g. detect overfitting and provide a solutions for industry projects that require neural net technology.1. To act responsibly - Enhanced To develop continuously - Enhanced Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspir	Module Name	Deep Learning and its Applications
Module Coordinator/sProf. François PitiéModule Learning Outcomes with reference to the Graduate Attributes and how they are developed in disciplineOn successful completion of this module, students should be able to: 1. Describe the main neural network architectures used in applications today. 1.2. Describe the parameters used in popular Deep Learning software libraries such as Keras. 1.3. Implement neural network applications using python 3 and keras. 1.4. Evaluate the performance of Machine Learning algorithms and analyse the potential pit falls. 1.5. Design neural network architectures for a particular application. 1.6. Train and debug neural network models (e.g. detect overfitting and provide a solution to mitigate its effects). 1.7. Plan and design solutions for industry projects that require neural net technology. 1.8. Answer typical questions from job interviews on Deep Learning.Module ContentGraduate Attributes: levels of attainment To act responsibly - Enhanced To communicate effectively - Enhanced To explearning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex. Deep Learning has recently become a disruptive technology that has been taking over operations of technology companies around the world and is	ECTS Weighting ²	10 ECTS
Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline On successful completion of this module, students should be able to: 1. Describe the main neural network architectures used in applications today. 1. Describe the main neural network architectures used in applications such as Keras. 1. Implement neural network applications using python 3 and keras. 1. Evaluate the performance of Machine Learning algorithms and analyse the potential pit fails. 15. Design neural network architectures for a particular application. 16. Train and debug neural network more free to verfitting and provide a solution to mitigate its effects). 17. Plan and design solutions from job interviews on Deep Learning. Graduate Attributes: levels of attainment To act responsibly - Enhanced To develop continuously - Enhanced To communicate effectively - Enhanced To pep Learning. Deep Learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the creebral cortex. Deep Learning has recently become a disruptive technology that has been taking over operations of technology companies around the world and is	Semester taught	Semester 1
reference to the Graduate Attributes and how they are developed in disciplineL1. Describe the main neural network architectures used in applications today. L2. Describe the parameters used in popular Deep Learning software libraries such as Keras. L3. Implement neural network applications using python 3 and keras. L4. Evaluate the performance of Machine Learning algorithms and analyse the potential pit falls. L5. Design neural network architectures for a particular application. L6. Train and debug neural network models (e.g. detect overfitting and provide a solution to mitigate its effects). L7. Plan and design solutions for industry projects that require neural net technology. L8. Answer typical questions from job interviews on Deep Learning.Module ContentThis module is an introduction to Machine Learning with a strong focus on Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex.Module ContentThis module is an introduction to Machine Learning with a strong focus on Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex.	Module Coordinator/s	Prof. François Pitié
Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex.Deep Learning has recently become a disruptive technology that has been taking over operations of technology companies around the world and is	reference to the <u>Graduate Attributes</u> and how they are developed in	 L1. Describe the main neural network architectures used in applications today. L2. Describe the parameters used in popular Deep Learning software libraries such as Keras. L3. Implement neural network applications using python 3 and keras. L4. Evaluate the performance of Machine Learning algorithms and analyse the potential pit falls. L5. Design neural network architectures for a particular application. L6. Train and debug neural network models (e.g. detect overfitting and provide a solution to mitigate its effects). L7. Plan and design solutions for industry projects that require neural net technology. L8. Answer typical questions from job interviews on Deep Learning. Graduate Attributes: levels of attainment To act responsibly - Enhanced To think independently - Enhanced To develop continuously - Enhanced
	Module Content	Deep Learning. Deep learning is another name for machine learning using artificial neural networks. It is loosely inspired by the structure of the neurons in the cerebral cortex.Deep Learning has recently become a disruptive technology that has been

¹ <u>An Introduction to Module Design</u> from AISHE provides a great deal of information on designing and re-designing modules.

² TEP Glossary

		rning how to mas learning how to c	-	ng is increasin	gly becoming
	Learning, includ	ts with an introduing Least Squares assification techn	, Logistic Regres	ssion and a qu	ick overview of
	Forward Neural	n dives into the f Nets, Convolutio roduced to the m	on Neural Nets	and Recurren	nt Neural Nets.
	practitioners inc	is constructed luding Google, Yc hese companies.			-
		ill give you exper Learning applicat		ield and allow	you to develop
Teaching and Learning Methods	Deep Learning has become so successful partly because it does not require arcane knowledge to practice it. This course aims at popularising Deep Learning mastery to a class of students with diverse technical background (eg. to both computer science and engineering students).				
	The teaching strategy for this module is a mixture of lectures, problem-solving tutorials and laboratories dedicated to implement and solve machine learning problems. Most of the theoretical elements of Machine Learnings and Deep Learning will be covered in the first half of the term. The rest of the term is dedicated to expose the students to more advanced labs and industry related problems. The students will have access to online resources and recorded lecture videos.				
	Flipped Classroc unlimited subm	rategy includes om. Labs are auto issions. Students hat checks the m	matically access must also suc	ed, and stude ccessfully pas	nts are allowed
Assessment Details ³ Please include the following:	Assessment Component	Assessment Description	LO Addressed	% of total	Week due
Assessment ComponentAssessment description	Exam	Written exam 2h	All	60%	n/a

³ TEP Guidelines on Workload and Assessment

•	Learning Outcome(s) addressed	CA: midterm	In-class MCQ	All	20%	Around W8
•	% of total Assessment due date	CA: labs	Code submission of 7 labs	All	20%	Throughout the semester

Reassessment Requirements

Contact Hours and Indicative Student Workload ³	Contact hours: 55		
	Independent Study (preparation for course and review of materials): 150		
	Independent Study (preparation for assessment, incl. completion of assessment): 12		
Recommended Reading List	 Supporting references (research publications, press articles, YouTube videos) are included in the handouts. Deep Learning, Ian Goodfellow et al., (MIT press), [https://www.deeplearningbook.org] Machine Learning on Cousera, Andrew Ng [https://www.coursera.org/learn/machine-learning] Neural Networks and Deep Learning, Michael Nielsen [http://neuralnetworksanddeeplearning.com/] 		
Module Pre-requisite			
Module Co-requisite			
Module Website	https://frcs.github.io/4C16/		
Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.	No.		
Module Approval Date			
Approved by			
Academic Start Year			
Academic Year of Date	September 2024		