FEI Titan 80 – 300kV FEG S/TEM
The FEI Titan 80 – 300kV FEG S/TEM (Scanning / Transmission Electron Microscope) is a powerful instrument capable of high resolution S/TEM imaging and nanoscale analytical materials characterisation. It is equipped with an EDAX EDX detector and a Gatan Tridiem spectrometer for EELS and EFTEM. These analytical capabilities provide information on a material’s chemical composition, ideally suited to materials qualification, nano-metrology, device testing and characterisation of a wide variety of nanoparticles and chip based materials. Within the AML, the Titan acts as our high end analytical S/TEM. Combined EDX/EELS capabilities in STEM mode, and EFTEM, make it a powerful tool for local nano-compositional analysis. It also acts as a screening instrument for our Nion UltraSTEM 200. These capabilities are supported by our suite of sample preparation instrumentation.
Technical Specifications
- Operating acceleration voltages 80 kV / 300 kV
- Information limit 0.1 nm
- STEM Resolution 0.2 nm, bright field, dark field and high angle annular dark field detectors
- EELS Energy resolution <0.8 eV
- Nanoscale Energy Dispersive X-ray (EDX) spectroscopy
- Complimentary simultaneous EDX/EELS STEM based analysis
- In-situ thermal, cryogenic, fluid and electrical capabilities.
Titan related publications
- Zhang, C.; McKeon, L.; Kremer, M. P.; Park, S.-H.; Ronan, O.; Seral‐Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C.; Anasori, B.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V., Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications 2019, 10 (1), 1795.
- Nerl, H. C.; Pokle, A.; Jones, L.; Müller-Caspary, K.; van den Bos, K. H. W.; Downing, C.; McCarthy, E. K.; Gauquelin, N.; Ramasse, Q. M.; Lobato, I.; Daly, D.; Idrobo, J. C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J. N.; Cucinotta, C. S.; Nicolosi, V., Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials 2019, 0 (0), 1903120.
- Maguire, P.; Downing, C.; Jadwiszczak, J.; O’Brien, M.; Keane, D.; McManus, J. B.; Duesberg, G. S.; Nicolosi, V.; McEvoy, N.; Zhang, H., Suppression of the shear Raman mode in defective bilayer MoS 2. Journal of Applied Physics 2019, 125 (6), 064305.
- Doherty, J.; Biswas, S.; McNulty, D.; Downing, C.; Raha, S.; O’Regan, C.; Singha, A.; O’Dwyer, C.; Holmes, J. D., One-Step Fabrication of GeSn Branched Nanowires. Chemistry of Materials 2019, 31 (11), 4016-4024.
- Alialy, S.; Gabriel, M.; Davitt, F.; Holmes, J. D.; Boland, J. J., Switching at the contacts in Ge9Sb1Te5 phase-change nanowire devices. Nanotechnology 2019, 30 (33), 335706.
- Jaśkaniec, S.; Hobbs, C.; Seral-Ascaso, A.; Coelho, J.; Browne, M. P.; Tyndall, D.; Sasaki, T.; Nicolosi, V., Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets. Scientific Reports 2018, 8 (1), 4179.
- Hobbs, C.; Jaskaniec, S.; McCarthy, E. K.; Downing, C.; Opelt, K.; Güth, K.; Shmeliov, A.; Mourad, M. C. D.; Mandel, K.; Nicolosi, V., Structural transformation of layered double hydroxides: an in situ TEM analysis. npj 2D Materials and Applications 2018, 2 (1), 4.
- Canavan, M.; Daly, D.; Rummel, A.; McCarthy, E. K.; McAuley, C.; Nicolosi, V., Novel in-situ lamella fabrication technique for in-situ TEM. Ultramicroscopy 2018, 190, 21-29.
- Long, E.; O’Brien, S.; Lewis, E. A.; Prestat, E.; Downing, C.; Cucinotta, C. S.; Sanvito, S.; Haigh, S. J.; Nicolosi, V., An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide. npj 2D Materials and Applications 2017, 1 (1), 22.
- Cummins, C.; Collins, T. W.; Kelly, R. A.; McCarthy, E. K.; Morris, M. A., In-depth TEM characterization of block copolymer pattern transfer at germanium surfaces. Nanotechnology 2016, 27 (48), 484003.
- Chen, Y.; Zhou, J.; Maguire, P.; O’Connell, R.; Schmitt, W.; Li, Y.; Yan, Z.; Zhang, Y.; Zhang, H., Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Scientific Reports 2016, 6, 20704.
- Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O’Brien, S. E.; McGuire, E. K.; Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 2014, 13, 624.