Skip to main content

Trinity College Dublin, The University of Dublin

Trinity Menu Trinity Search



You are here Instrumentation > Transmission Electron Microscopes (STEM/TEM) > FEI Titan 80 – 300kV FEG S/TEM

FEI Titan 80 – 300kV FEG S/TEM

The FEI Titan 80 – 300kV FEG S/TEM (Scanning / Transmission Electron Microscope) is a powerful instrument capable of high resolution S/TEM imaging and nanoscale analytical materials characterisation. It is equipped with an EDAX EDX detector and a Gatan Tridiem spectrometer for EELS and EFTEM. These analytical capabilities provide information on a material’s chemical composition, ideally suited to materials qualification, nano-metrology, device testing and characterisation of a wide variety of nanoparticles and chip based materials. Within the AML, the Titan acts as our high end analytical S/TEM. Combined EDX/EELS capabilities in STEM mode, and EFTEM, make it a powerful tool for local nano-compositional analysis. It also acts as a screening instrument for our Nion UltraSTEM 200. These capabilities are supported by our suite of sample preparation instrumentation.

Technical Specifications

  • Operating acceleration voltages 80 kV / 300 kV
  • Information limit 0.1 nm
  • STEM Resolution 0.2 nm, bright field, dark field and high angle annular dark field detectors
  • EELS Energy resolution <0.8 eV
  • Nanoscale Energy Dispersive X-ray (EDX) spectroscopy
  • Complimentary simultaneous EDX/EELS STEM based analysis
  • In-situ thermal, cryogenic, fluid and electrical capabilities.

Titan related publications

  1. Zhang, C.;  McKeon, L.;  Kremer, M. P.;  Park, S.-H.;  Ronan, O.;  Seral‐Ascaso, A.;  Barwich, S.;  Coileáin, C. Ó.;  McEvoy, N.;  Nerl, H. C.;  Anasori, B.;  Coleman, J. N.;  Gogotsi, Y.; Nicolosi, V., Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications 2019, 10 (1), 1795.
  2.  Nerl, H. C.;  Pokle, A.;  Jones, L.;  Müller-Caspary, K.;  van den Bos, K. H. W.;  Downing, C.;  McCarthy, E. K.;  Gauquelin, N.;  Ramasse, Q. M.;  Lobato, I.;  Daly, D.;  Idrobo, J. C.;  Van Aert, S.;  Van Tendeloo, G.;  Sanvito, S.;  Coleman, J. N.;  Cucinotta, C. S.; Nicolosi, V., Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials 2019, 0 (0), 1903120.
  3. Maguire, P.;  Downing, C.;  Jadwiszczak, J.;  O’Brien, M.;  Keane, D.;  McManus, J. B.;  Duesberg, G. S.;  Nicolosi, V.;  McEvoy, N.; Zhang, H., Suppression of the shear Raman mode in defective bilayer MoS 2. Journal of Applied Physics 2019, 125 (6), 064305.
  4. Doherty, J.;  Biswas, S.;  McNulty, D.;  Downing, C.;  Raha, S.;  O’Regan, C.;  Singha, A.;  O’Dwyer, C.; Holmes, J. D., One-Step Fabrication of GeSn Branched Nanowires. Chemistry of Materials 2019, 31 (11), 4016-4024.
  5. Alialy, S.;  Gabriel, M.;  Davitt, F.;  Holmes, J. D.; Boland, J. J., Switching at the contacts in Ge9Sb1Te5 phase-change nanowire devices. Nanotechnology 2019, 30 (33), 335706.
  6. Jaśkaniec, S.;  Hobbs, C.;  Seral-Ascaso, A.;  Coelho, J.;  Browne, M. P.;  Tyndall, D.;  Sasaki, T.; Nicolosi, V., Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets. Scientific Reports 2018, 8 (1), 4179.
  7. Hobbs, C.;  Jaskaniec, S.;  McCarthy, E. K.;  Downing, C.;  Opelt, K.;  Güth, K.;  Shmeliov, A.;  Mourad, M. C. D.;  Mandel, K.; Nicolosi, V., Structural transformation of layered double hydroxides: an in situ TEM analysis. npj 2D Materials and Applications 2018, 2 (1), 4.
  8. Canavan, M.;  Daly, D.;  Rummel, A.;  McCarthy, E. K.;  McAuley, C.; Nicolosi, V., Novel in-situ lamella fabrication technique for in-situ TEM. Ultramicroscopy 2018, 190, 21-29.
  9. Long, E.;  O’Brien, S.;  Lewis, E. A.;  Prestat, E.;  Downing, C.;  Cucinotta, C. S.;  Sanvito, S.;  Haigh, S. J.; Nicolosi, V., An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide. npj 2D Materials and Applications 2017, 1 (1), 22.
  10. Cummins, C.;  Collins, T. W.;  Kelly, R. A.;  McCarthy, E. K.; Morris, M. A., In-depth TEM characterization of block copolymer pattern transfer at germanium surfaces. Nanotechnology 2016, 27 (48), 484003.
  11. Chen, Y.;  Zhou, J.;  Maguire, P.;  O’Connell, R.;  Schmitt, W.;  Li, Y.;  Yan, Z.;  Zhang, Y.; Zhang, H., Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Scientific Reports 2016, 6, 20704.
  12. Paton, K. R.;  Varrla, E.;  Backes, C.;  Smith, R. J.;  Khan, U.;  O’Neill, A.;  Boland, C.;  Lotya, M.;  Istrate, O. M.;  King, P.;  Higgins, T.;  Barwich, S.;  May, P.;  Puczkarski, P.;  Ahmed, I.;  Moebius, M.;  Pettersson, H.;  Long, E.;  Coelho, J.;  O’Brien, S. E.;  McGuire, E. K.;  Sanchez, B. M.;  Duesberg, G. S.;  McEvoy, N.;  Pennycook, T. J.;  Downing, C.;  Crossley, A.;  Nicolosi, V.; Coleman, J. N., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 2014, 13, 624.

FEI Titan 80 – 300kV FEG S/TEM

HAADF STEM images of WO3 in its three phases, hydrated-orthorhombic, hexagonal and monoclinic, respectively HAADF STEM image of WO3 displaying the formation of a seamless interface between the hexagonal and monoclinic phases