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Recall:

Definition

Let (S,A) be a sample space and a collection of events, i.e.
subsets of S. A probability is a function P that assigns to all
events a number between 0 and 1 (mathematically:
P : A → [0, 1]) such that the two Axioms of Probability hold:

1 P(S) = 1,
2 P(A1 ∪ A2 ∪ · · · ) =

∑
i P(Ai), whenever A1, A2, . . . are

mutually exclusive events in A.

Any definition or interpretation of probability must satisfy
these conditions.
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Classical definition

Definition

The classical definition of probability assigns to the event A ⊆ S
the number

P(A) =
|A|
|S|

.

Is this a probability?

0 ≤ P(A) ≤ 1 (A ⊆ S)

P(S) = |S|
|S| = 1 (1st axiom)
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Second Axiom

Let A1, A2, . . . be mutually exclusive. Then

P(A1 ∪ A2 ∪ · · · ) =
|A1 ∪ A2 ∪ · · · |

|S|

=
|A1|+ |A2|+ · · ·

|S|

=
|A1|
|S|

+
|A2|
|S|

+ · · ·

=
∑

i

|Ai |
|S|

=
∑

i

P(Ai).

⇒ Yes, P is a probability.
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Alternative Way

For every possible outcome si ∈ S, define the number

pi =
1
|S|

.

⇒ this assumes that every outcome is equally likely.

“Recover” the classical probability as follows:

P(A) =
∑

{k∈A}

pk ,

since

∑
{k∈A}

pk =
∑

{k∈A}

1
|S|

=
|{k ∈ A}|

|S|
=
|A|
|S|

.
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Example: Roll a die

S = {1, 2, 3, 4, 5, 6}.
Let:

A = {an even number occurs} = {2, 4, 6}.

Then:

P(A) =
|A|
|S|

=
|{2, 4, 6}|

|{1, 2, 3, 4, 5, 6}|
=

3
6

=
1
2
.

Or: “all k in A” are 2, 4, and 6,

so:

P(A) =
∑

{k∈A}

pk = p2 + p4 + p6 =
1
6

+
1
6

+
1
6

=
1
2
.

Jacco Thijssen Probability definitions



Relative frequency definition

Definition

Let S = {s1, . . . , sn} be a sample space and let p1, p2, . . . , pn

be such that
1 all pi are in [0, 1] and
2

∑n
i=1 pi = 1.

The relative frequency probability assigns to every event A the
probability

P(A) =
∑

{k∈A}

pk .

Classical definition is special case of relative frequency
definition:

⇒ p1 = · · · = pn = 1/|S|.
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Is this a probability?

P(A) ≥ 0 (since all p’s non-negative)

P(A) =
∑

{k∈A} pk ≤
∑

{k∈S} pk =
∑n

k=1 pk = 1.

First axiom: P(S) =
∑

{k∈S} pk =
∑n

k=1 pk = 1.

Second axiom: Let A1, A2, . . . be mutually exclusive. Then

P(A1 ∪ A2 ∪ · · · ) =
∑

{k∈A1∪A2∪··· }

pk

=
∑

{k∈A1}∪{k∈A2}∪···

pk

=
∑

{k∈A1}

pk +
∑

{k∈A2}

pk + · · ·

= P(A1) + P(A2) + · · · =
∑

i

P(Ai).
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Example
Roll a die

You rolled a die 1,000 times and observed:
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Example (cont’d)

Classical probability (p1 = · · · = p6 = 1/6)? No!

Relative frequencies: p2 = · · · = p6 = 1/10.

Since
∑6

i=1 pi = 1, we must take p1 = 1/2.

Let A = {2, 4, 6}. Then

P(A) =
∑

{k∈A}

pk = p2 + p4 + p6 =
1

10
+

1
10

+
1

10
=

3
10

.

Let B = {1, 3, 5}. Then

P(B) =
∑

{k∈B}

pk = p1 + p2 + p3 =
1
2

+
1

10
+

1
10

=
7

10
.
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