Topic 3: MATRICES

Jacques (3rd Edition): Chapter 7.1- 7.2

Content

- Adding, Subtracting and Multiplying Matrices
- Matrix Inversion
- Example: Model of National Income

A Vector: list of numbers arranged in a row or column

e.g. consumption of 10 units X and 6 units of Y gives a consumption vector (X,Y) of $(10,6) \neq (6,10)$

A Matrix: a two-dimensional array of numbers arranged in rows and columns

e.g.
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 a 2 X 3 matrix

- with 2 rows and 3 columns
- component a_{ij} in the matrix is in the i^{th} row and the j^{th} column

- e.g. let a_{ij} be amount good j consumed by individual i
- columns1-3: represent goods X, Y& Z
- rows 1-2: represent individuals 1 & 2

Matrix of consumption

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix} = \begin{bmatrix} 0 & 10 & 5 \\ 4 & 0 & 6 \end{bmatrix}$$

Individual 1 consumes 0 of X, 10 of Y and 5 of Z

Individual 2 consumes 4 of X, 0 of Y and 6 of Z

NOTE

Row Vector is a matrix with only 1 row: $A = \begin{bmatrix} 5 & 4 & 3 \end{bmatrix}$ 1 X 3 matrix

Column Vector is a matrix with only 1

column:
$$A = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$$
 3 X 1 matrix

Transposing Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad 2 \times 3 \text{ matrix}$$

Then

$$\mathbf{A^{T}} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix} \quad 3X2 \text{ matrix}$$

the transpose of a matrix replaces rows by columns.

$$\mathbf{A} = \begin{bmatrix} 0 & 10 & 5 \\ 4 & 0 & 6 \end{bmatrix} \text{ then } \mathbf{A}^{\mathbf{T}} = \begin{bmatrix} 0 & 4 \\ 10 & 0 \\ 5 & 6 \end{bmatrix}$$

Adding and Subtracting Matrices

Matrices **must** have same number of rows and columns, m X n

Just add (subtract) the corresponding elements.....

A + B + C = D i.e.
$$a_{ij} + b_{ij} + c_{ij} = d_{ij}$$

$$\begin{bmatrix} 9 & -3 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 5 & 2 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 15 & 2 \\ 6 & 5 \end{bmatrix}$$

A - B = E i.e.
$$a_{ij} - b_{ij} = e_{ij}$$

$$\begin{bmatrix} 9 & -3 \\ 4 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 2 \\ -1 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -5 \\ 5 & -5 \end{bmatrix}$$

Multiplying Matrices

To multiply A and B,

No. Columns in A = No. Rows in B

Then
$$A \times B = C$$

 $(1x \ 3) (3x \ 2) = (1x \ 2)$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \end{bmatrix}$$

$$c_{11} = (a_{11}.b_{11}) + (a_{12}.b_{21}) + (a_{13}.b_{31})$$

$$c_{12} = (a_{11}.b_{12}) + (a_{12}.b_{22}) + (a_{13}.b_{32})$$

$$\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 5 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 25 & 29 \end{bmatrix}$$

$$c_{11} = (2x1) + (3x5) + (4x2) = 25$$

$$c_{12} = (2x2) + (3x3) + (4x4) = 29$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 5 & 4 & 1 & 1 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 2 & 5 & 4 \\ 23 & 17 & 6 & 5 \end{bmatrix}$$

$$c_{11} = (2x3) + (1x1) + (0x5) = 7$$

$$c_{12} = (2x1) + (1x0) + (0x4) = 2$$

$$c_{13} = (2x2) + (1x1) + (0x1) = 5$$

$$c_{14} = (2x1) + (1x2) + (0x1) = 4$$

$$c_{21} = (1x3) + (0x1) + (4x5) = 23$$

$$c_{22} = (1x1) + (0x0) + (4x4) = 17$$

$$c_{23} = (1x2) + (0x1) + (4x1) = 6$$

$$c_{24} = (1x1) + (0x2) + (4x1) = 5$$

SCALAR MULTIPLICATION

$$\mathbf{If} \, \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Then
$$3A = \begin{bmatrix} 3 \times a_{11} & 3 \times a_{12} \\ 3 \times a_{21} & 3 \times a_{22} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \text{ then } 2\mathbf{A} = \begin{bmatrix} 8 & 6 \\ 4 & 2 \end{bmatrix}$$

And
$$3A = \begin{bmatrix} 12 & 9 \\ 6 & 3 \end{bmatrix}$$

Practice Transposing, Adding, Subtracting and Multiplying Matrices using examples from any Text Book – or simply by writing down some simple matrices yourself....

Determinant of a Matrix

If
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Now we can find the determinant.....

Multiply elements in *any one* row **or** *any one* column by corresponding co-factors, and sum....

Select row 1....

$$|A| = a_{11}.C_{11} + a_{12}.C_{12} = ad - bc$$

Select column 2

$$|A| = a_{12}.C_{12} + a_{22}.C_{22} = b(-c)+da$$

MATRIX INVERSION

Square matrix: no. rows = no. columns

Identity Matrix I: AI = A and IA = A

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (for 2 X 2 matrix)

Inverse Matrix A⁻¹: $A.A^{-1} = I$ $A^{-1}.A = I$

TO INVERT 2 X 2 MATRIX.....

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- 1) Get Cofactor Matrix: $\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$
- 2) Transpose Cofactor Matrix: $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

1) multiply matrix by
$$\frac{1}{|A|}$$
 so

$$\frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (i.e. divide each element by ad—bc)

If |A|=0 then there is no inverse.....(matrix is singular)

Example....find the inverse of matrix A

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$|A| = ad-bc = (1.4)-(2.3) = -2$$
(non-singular)

$$\mathbf{A}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Check:
$$A.A^{-1} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example....find the inverse of matrix B

$$\mathbf{B} = \begin{bmatrix} 2 & 4 \\ 5 & 10 \end{bmatrix}$$

$$|B| = ad - bc = (2.10) - (4.5) = 0$$

therefore, matrix is singular and inverse does not exist

Example Expenditure model of national income

Y = Income

C = Consumption

I = Investment

G = Government expenditure

$$Y = C + I + G \tag{1}$$

The consumption function is

$$C = a + bY (2)$$

Note C and Y are endogenous. I and G are exogenous.

How to solve for values of endogenous variables Y and C?

Method 1

Solve the above equations directly, substituting expression for C in eq. (2) into eq. (1)

Thus,
$$Y = a + bY + I + G$$

Solve for Y as:

$$Y - bY = a + I + G$$

$$Y(1 - b) = a + I + G$$

$$Thus, Y = \frac{a + I + G}{1 - b}$$

Substitute this value for Y into eq. (2) and solve for C:

$$C = a + b \left[\frac{a + I + G}{1 - b} \right] = \frac{(I + G)b + a}{1 - b}$$

Method 2

Now solve the same problem using matrix algebra:

• Rewrite (1) and (2) with endogenous variables, C and Y, on left hand side

From eq. 1: Y - C = I + G

From eq. 2: -bY + C = a

• Now write this in matrix notation:

 $\begin{bmatrix} 1 & -1 \\ -b & 1 \end{bmatrix} \begin{bmatrix} Y \\ C \end{bmatrix} = \begin{bmatrix} I+G \\ a \end{bmatrix}$

or A.X = B

We can solve for the endogenous variables
X, by calculating the inverse of the A matrix and multiplying by B:

Since $AX=B \implies X=A^{-1}B$

• To invert the 2 X 2 A matrix, recall the steps from earlier in the lecture

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

• In this case, where $A = \begin{bmatrix} 1 & -1 \\ -b & 1 \end{bmatrix}$

the determinant of A is:

$$|A| = 1.1 - [-1.-b] = I - b$$

Cofactor Matrix: $\begin{bmatrix} 1 & b \\ 1 & 1 \end{bmatrix}$

Transpose Cofactor Matrix: $\begin{bmatrix} 1 & 1 \\ b & 1 \end{bmatrix}$

The inverse is:

$$A^{-1} = \frac{1}{1-b} \begin{bmatrix} 1 & 1 \\ b & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{1-b} & \frac{1}{1-b} \\ \frac{b}{1-b} & \frac{1}{1-b} \end{bmatrix}$$

• so $X = A^{-1}B$

where
$$X = \begin{bmatrix} Y \\ C \end{bmatrix}$$
 and $B = \begin{bmatrix} I + G \\ a \end{bmatrix}$

$$X = \begin{bmatrix} Y \\ C \end{bmatrix} = \begin{bmatrix} \frac{1}{1-b} & \frac{1}{1-b} \\ \frac{b}{1-b} & \frac{1}{1-b} \end{bmatrix} \begin{bmatrix} I+G \\ a \end{bmatrix}$$

Thus, multiplying A⁻¹B gives,

$$\begin{bmatrix} Y \\ C \end{bmatrix} = \begin{bmatrix} \frac{I + G + a}{1 - b} \\ \frac{(I + G)b + a}{1 - b} \end{bmatrix}$$

These are the solutions for the endogenous variables, C and Y, just as we derived using method 1.

Method 3: Using Cramers Rule

In the example above, where

$$A = \begin{bmatrix} 1 & -1 \\ -b & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} Y \\ C \end{bmatrix}$$

$$B = \begin{bmatrix} I + G \\ a \end{bmatrix}$$

 Replace column 1 of A with the elements of vector B

$$A_1 = \begin{bmatrix} I + G & -1 \\ & & \\ a & 1 \end{bmatrix}$$

Calculate the determinant of this as:

$$|A_1| = (I + G)(1) - (-1)(a) = I + G + a$$

• We saw earlier that the determinant of A is |A| = 1-b

• Therefore the solution using Cramers rule is:

$$Y = \frac{|A_1|}{|A|} = \frac{I + G + a}{1 - b}$$

• Replace column 2 of A with the elements of vector b

$$A_2 = \begin{bmatrix} 1 & I + G \\ -b & a \end{bmatrix}$$

• Calculate the determinant of this as: $|A_2|=(1)(a)-(I+G)(-b)=a+b(I+G)$ • We saw earlier that the determinant of A is

$$|A| = 1 - b$$

• Therefore the solution using Cramers rule is:

$$C = \frac{|A_2|}{|A|} = \frac{a + b(I + G)}{1 - b}$$

(just as we derived using the other 2 methods)

TO INVERT 3 X 3 MATRIX.....

To find inverse of 3 X 3 matrix, First need to calculate determinant

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Corresponding to each a_{ij} is a co-factor C_{ij} . 9 elements in $3X3 \Rightarrow 9$ co-factors.

Co-factor C_{ij} = determinant of 2X2 matrix obtained by deleting row i and column j of A, prefixed by + or – according to following pattern...

e.g. C_{23} is co-factor associated with a_{23} , in row 2 and column 3

so delete row 2 and column 3 to give a 2X2 matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

co-factor C_{23} is – determinant of 2X2 matrix (negative sign in position a_{23})

$$\mathbf{C}_{23} = -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} = -(\mathbf{a}_{11}.\mathbf{a}_{32} - \mathbf{a}_{12}.\mathbf{a}_{31})$$

e.g find all co-factors of matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 1 \\ 4 & 3 & 7 \\ 2 & 1 & 3 \end{bmatrix}$$

 C_{11} = (delete row 1 column 1, compute determinant of remaining 2X2 matrix, position a_{11} associated with +)

$$\begin{bmatrix} 2 & 4 & 1 \\ 4 & 3 & 7 \\ 2 & 1 & 3 \end{bmatrix} \quad \text{and} \quad + \begin{vmatrix} 3 & 7 \\ 1 & 3 \end{vmatrix} = +[3.3 - (7.1)] = 2$$

 C_{12} = (delete row 1 column 2, compute determinant of remaining 2X2 matrix, position a_{21} associated with -)

$$\begin{bmatrix} 2 & 4 & 1 \\ 4 & 3 & 7 \\ 2 & 1 & 3 \end{bmatrix} \quad \text{and} \quad -\begin{vmatrix} 4 & 7 \\ 2 & 3 \end{vmatrix} = -[4.3 - (7.2)] = +2$$

Other co-factors compute as

$$C_{13} = + \begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix} = + [4.1 - (3.6)] = -2$$

$$C_{21} = - \begin{vmatrix} 4 & 1 \\ 1 & 3 \end{vmatrix} = - [4.3 - (1.1)] = -11$$

$$C_{22} = + \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = + [2.3 - (1.2)] = 4$$

$$C_{23} = - \begin{vmatrix} 2 & 4 \\ 2 & 1 \end{vmatrix} = - [2.1 - (4.2)] = 6$$

$$C_{31} = + \begin{vmatrix} 4 & 1 \\ 3 & 7 \end{vmatrix} = + [4.7 - (1.3)] = 25$$

$$C_{32} = - \begin{vmatrix} 2 & 1 \\ 4 & 7 \end{vmatrix} = - [2.7 - (1.4)] = -10$$

$$C_{33} = + \begin{vmatrix} 2 & 4 \\ 4 & 3 \end{vmatrix} = + [2.3 - (4.4)] = -10$$

Co-factor Matrix =
$$\begin{bmatrix} 2 & 2 & -2 \\ -11 & 4 & 6 \\ 25 & -10 & -10 \end{bmatrix}$$

Now we can find the determinant.....

Multiply elements in *any one* row **or** *any one* column by corresponding co-factors, and sum.....

Select row 1....

$$|\mathbf{A}| = \mathbf{a}_{11}.\mathbf{C}_{11} + \mathbf{a}_{12}.\mathbf{C}_{12} + \mathbf{a}_{13}.\mathbf{C}_{13}$$

or equivalently select column 2

$$|A| = a_{12}.C_{12} + a_{22}.C_{22} + a_{32}.C_{32}$$

so the determinant of
$$A = \begin{bmatrix} 2 & 4 & 1 \\ 4 & 3 & 7 \\ 2 & 1 & 3 \end{bmatrix}$$

$$|A| = a_{21}.C_{21} + a_{22}.C_{22} + a_{23}.C_{23}$$

= $(4.-11) + (3.4) + (7.6) = 10$

Now we can find the Inverse.....

$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$

Step 1: write matrix of co-factors

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} 2 & 2 & -2 \\ -11 & 4 & 6 \\ 25 & -10 & -10 \end{bmatrix}$$

Step 2: transpose that matrix (replace rows by columns), so

$$\begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} = \begin{bmatrix} 2 & -11 & 25 \\ 2 & 4 & -10 \\ -2 & 6 & -10 \end{bmatrix}$$

Step 3: multiply each element by $\frac{1}{|A|}$

$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 & -11 & 25 \\ 2 & 4 & -10 \\ -2 & 6 & -10 \end{bmatrix}$$

So
$$A^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{11}{10} & \frac{5}{2} \\ \frac{1}{5} & \frac{2}{5} & -1 \\ -\frac{1}{5} & \frac{3}{5} & -1 \end{bmatrix}$$

Check: $A.A^{-1} = I$

Practice inverting various 2X2 and 3X3 matrices using examples from Jacques, or other similar text books.

Questions Covered Topic 3: *MATRICES*

- Adding, Subtracting and Multiplying Matrices
- Matrix Inversion
- Example: Model of National Income