Topic 2: Linear Economic Models

Jacques Text Book (edition 3): section 1.2 – Algebraic Solution of Simultaneous Linear Equations section 1.3 – Demand and Supply Analysis

Content

- Simultaneous Equations
- Market Equilibrium
- Market Equilibrium + Excise Tax
- Market Equilibrium + Income

Solving Simultaneous Equations

Example

•	4x + 3y = 11	(eq.1)
•	2x + y = 5	(eq.2)

Express both equations in terms of the same value of x (or y)

•	4x = 11 - 3y	(eq.1')
•	4x = 10 - 2y	(eq.2')

Hence

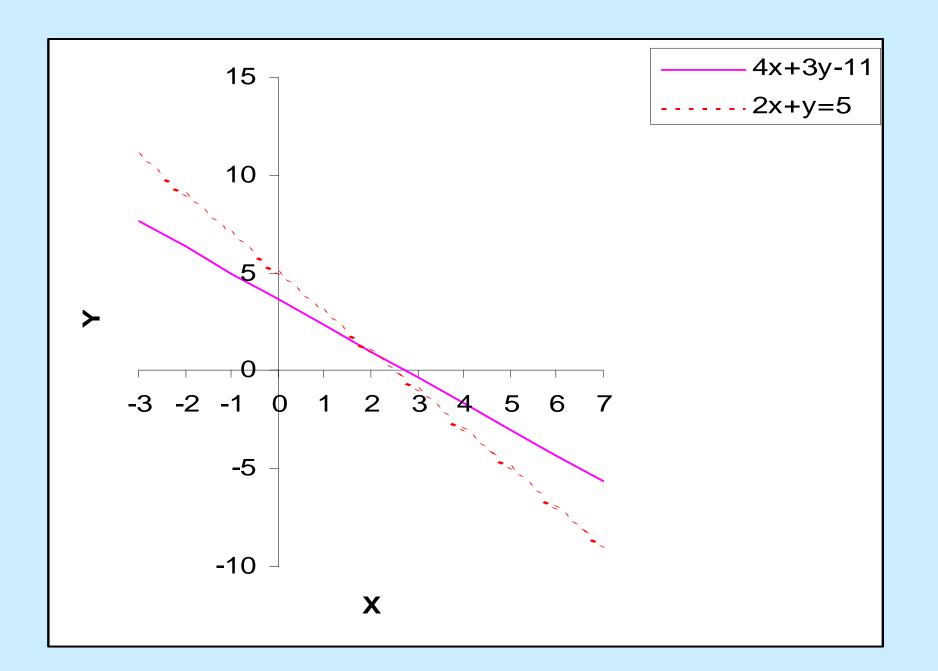
• 11 - 3y = 10 - 2y

Collect terms

- 11 10 = -2y + 3y
- y = 1

Compute x

- 4x = 10 2y
- 4x = 10 2 = 8
- x = 2



Note that if the two functions do not intersect, then cannot solve equations simultaneously.....

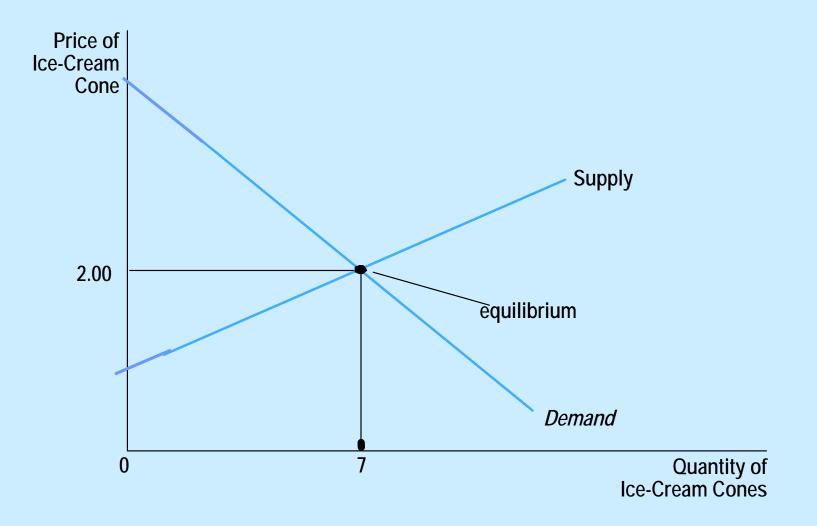
• $x - 2y = 1$		(eq.1)
• $2x - 4y = -3$		(eq.2)
Step 1		
• $2x = 2 + 4y$		(eq.1*)
• $2x = -3 + 4y$		(eq.2*)
Step 2		
• $2 + 4y = -3 + 4y$	BUT =>	

No Solution to the System of Equations

2+3 = 0.....

Solving Linear Economic Models

- **Quantity Supplied**: amount of a good that sellers are willing and able to sell
- Supply curve: upward sloping line relating price to quantity supplied
- **Quantity Demanded**: amount of a good that buyers are willing and able to buy
- **Demand curve:** downward sloping line relating price to quantity demanded
- Market Equilibrium: quantity demand = quantity supply



Finding the equilibrium price and quantity levels.....

• In general,

Demand: $Q_D = a + bP$ (with b<0)</th>Supply: $Q_S = c + dP$ (with d>0)

- Set Q_D = Q_S and solve simultaneously for
 P^e = (a c)/(d b)
- Knowing P^e, find Q^e given the demand/supply functions

 $Q^e = (ad - bc)/(d - b)$

Example 1

Demand Supply $Q_{\rm D} = 50 - P$ $Q_{\rm S} = -10 + 2P$

(i) (ii)

- Set $Q_D = Q_S$ find market equilibrium P and Q
- 50 P = 10 + 2P
- 3P = 60
- P = 20

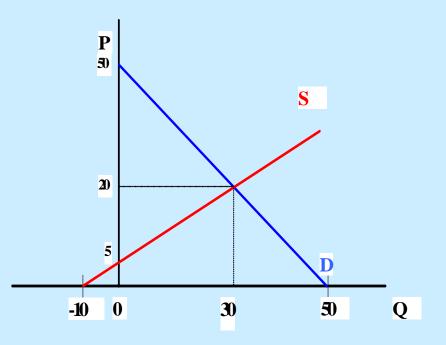
Knowing P, find Q

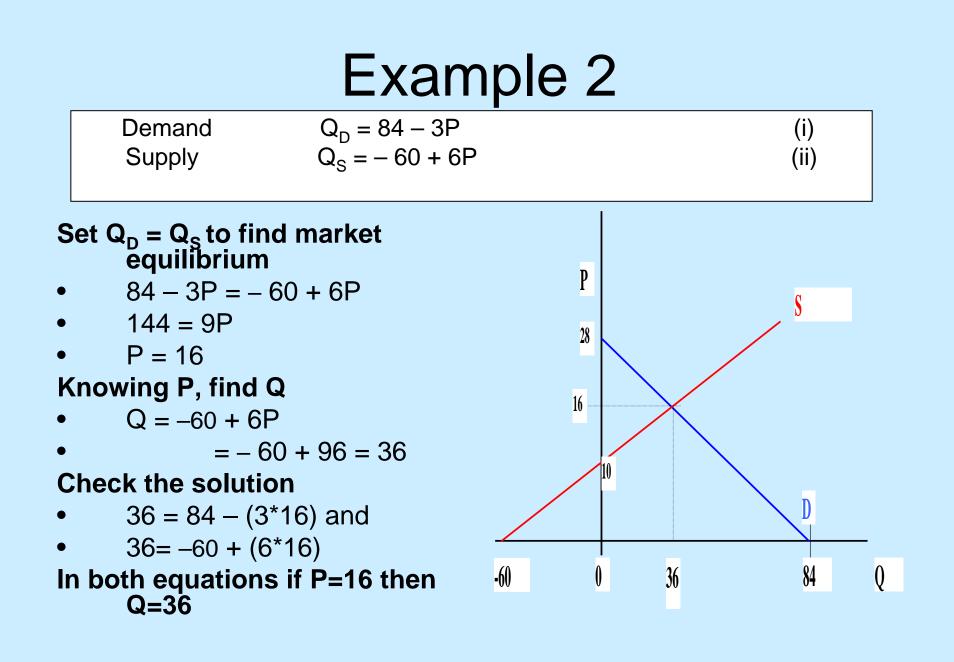
- Q = 50 P
- = 50 20 = 30

Check the solution

• i) 30 = 50 - 20 and (ii) 30 = -10 + 40

In both equations if P=20 then Q=30





Market Equilibrium + Excise Tax

- Impose a tax t on suppliers per unit sold.....
- Shifts the supply curve to the left
- $Q_D = a bP$
- $Q_S = d + eP$ with no tax
- $Q_S = d + e(P t)$ with tax t on suppliers
- So from example 1....
- $Q_D = 50 P$,
- Q_S = 10 + 2P becomes
- Q_S = 10 + 2(P-t) = 10 + 2P 2t cont....

Continued.....

Write Equilibrium P and Q as functions of t

- Set $Q_D = Q_S$
- 50 P = -10 + 2P 2t
- 60 = 3P 2t
- 3P = 60 + 2t
- $P = 20 + \frac{2}{3}t$

Knowing P, find Q

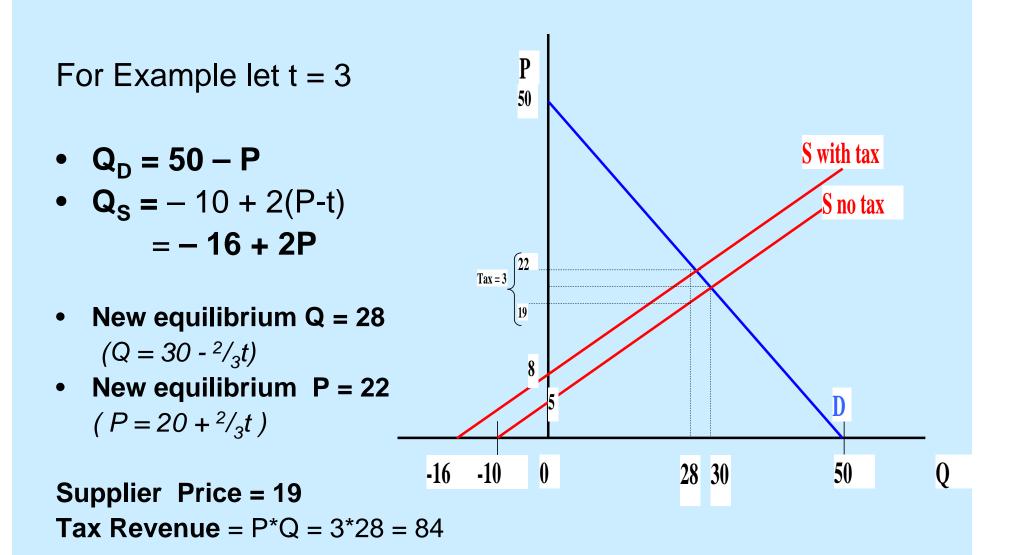
• Q = 50 - P

Comparative Statics: effect on P and Q of 1

(i) As \uparrow t, then \uparrow P paid by consumers by $2/_3 t$ \Rightarrow remaining tax ($1/_3$) is paid by suppliers total tax t = $2/_3 t + 1/_3 t$

Consumers pay Suppliers pay Price consumers pay – price suppliers receive = total tax t

(ii) and $\checkmark Q$ by $^{2}/_{3}$ t , reflecting a shift to the left of the supply curve



Another Tax Problem....

$$Q_D = 132 - 8P$$

 $Q_S = -6 + 4P$

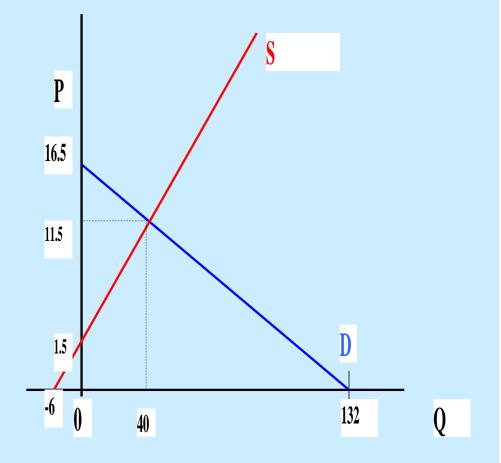
- Find the equilibrium P and Q.
- How does a per unit tax t affect outcomes?
- What is the equilibrium P and Q if unit tax t = 4.5?

Solution....

- (i) Market Equilibrium values of P and Q
- Set Q_D = Q_S
 132 8P = -6 +4P
 12P = 138
 P = 11.5
- Knowing P, find Q Q = -6 + 4P

•
$$= -6 + 4(11.5) = 40$$

• Equilibrium values: P = 11.5 and Q= 40



(ii) The Comparative Statics of adding a tax.....

 $Q_D = 132 - 8P$ $Q_S = -6 + 4(P - t) = -6 + 4P - 4t$

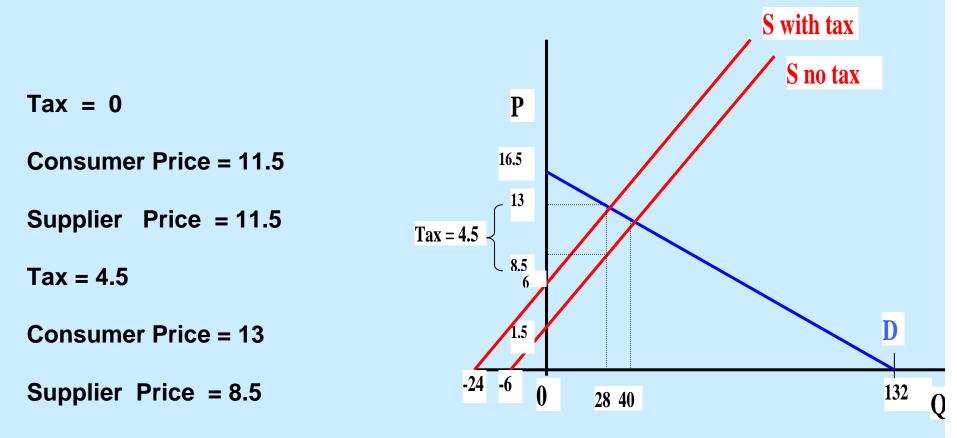
```
Set Q_D = Q_S
132 - 8P = -6 +4P - 4t
12P = 138 + 4t
```

 $P = 11.5 + \frac{1}{3}t = 13$ if t = 4.5

Imposing $t \Rightarrow \uparrow$ consumer P by $\frac{1}{_3}t$, supplier pays $\frac{2}{_3}t$

Knowing P, find Q Q = 132 - 8(13) = 28

(iii) If per unit t = 4.5



Tax Revenue = P*Q = 4.5*28 = 126

Market Equilibrium and Income

• Let $Q_D = a + bP + cY$

Example: the following facts were observed for a good,

- Demand = 110 when P = 50 and Y = 20
- When Y increased to 30, at P = 50 the demand = 115
- When P increased to 60, at Y = 30 the demand = 95

(i) Find the Linear Demand Function Q_D?

Rewriting the facts into equations:

- 110 = a + 50b + 20c eq.1
- 115 = a + 50b + 30c eq.2
- 95 = a + 60b + 30c

eq.2 eq.3

To find the demand function

$$Q_D = a + bP + cY$$

we need to solve these three equations simultaneously for a, b, and c

Rewriting 1 and 2

- a = 110 50b 20c
- a = 115 50b 30c
- =>
- 110 50b 20c = 115 50b 30c
- 10c = 5
- $C = \frac{1}{2}$

Rewriting 1 & 3 given $c = \frac{1}{2}$

- 110 = a + 50b + 10
- 95 = a + 60b + 15
- a = 100 50b
- a = 80 60b
- 100 50b = 80 60b
- 10b = -20
- b = -2

(eq.1*) (eq.2*)

 $(eq.1^*)$

 $(eq.3^{*})$

 $(eq.1^{*})$

 $(eq.3^{*})$

Given b = -2 and $c = \frac{1}{2}$, solve for a

- a = 110 50b 20c eq.1'
- a = 110 + 100 10 = 200
- \Rightarrow Q_D = 200 -2P + $\frac{1}{2}$ Y

Now, let $Q_{S} = 3P - 100$

Describe fully the comparative static's of the model using Q_D and Q_S equations?

Set $Q_D = Q_S$ for equilibrium values of P and Q

- 200 -2P + $\frac{1}{2}$ Y = 3P 100
- $5P = 300 + \frac{1}{2}Y$
- $P = 60 + \frac{1}{10}Y$

Knowing P, find Q

• $Q = 3(60 + 1/_{10}Y) - 100$

•
$$= 80 + \frac{3}{10}$$
Y

What is equilibrium P and Q when Y = 20

- $P = 60 + \frac{1}{10}Y$
- $P = 60 + \frac{1}{10} (20) = 62$

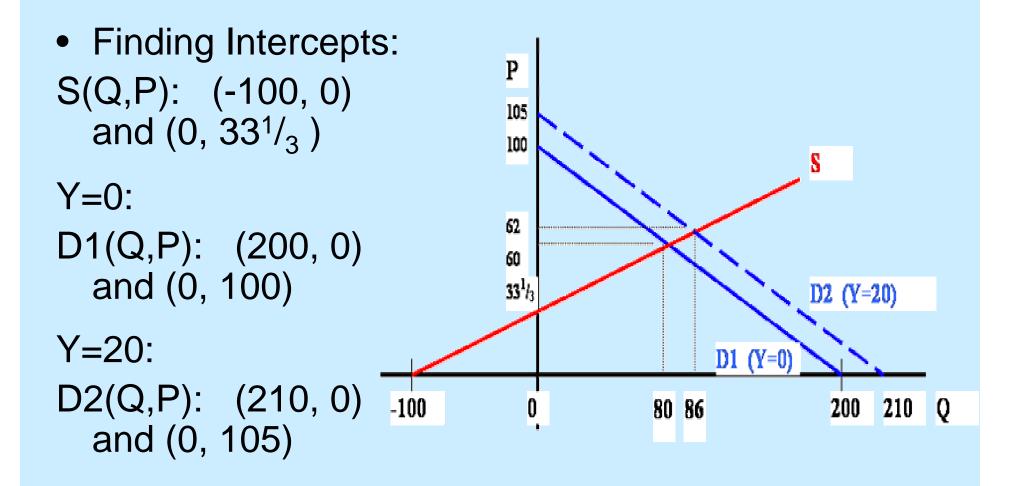
i.e \uparrow P by $^{1}/_{10}$ of 20 = 2

•
$$Q = 80 + \frac{3}{10}Y$$

• $Q = 80 + \frac{3}{10} (20) = 86$

i.e \uparrow Q by $\frac{3}{10}$ of 20 = 6

$Qd = 200 - 2P + \frac{1}{2} Y$ Qs = 3P - 100



Questions Covered Topic 2: Linear Economic Models

- Algebraic Solution of Simultaneous Linear Equations
- Solving for equilibrium values of P and Q
- Impact of tax on equilibrium values of P and Q
- Impact of Income on Demand Functions and on equilibrium values of P and Q