Topic 2: Linear Economic Models

(i) Market Equilibrium
(ii) Market Equilibrium + Excise Tax

Lecture Notes: sections 2.1 and 2.2

Jacques Text Book (edition 2): section 1.2 - Algebraic Solution of Simultaneous Linear Equations
section 1.3 - Demand and Supply Analysis

ASIDE:

Solving Simultaneous Equations

\Rightarrow Plot on a graph and then solve to find common co-ordinates...... OR

\Rightarrow Solve Algebraically

Eg.

$$
\begin{array}{ll}
4 x+3 y=11 & \text { eq. } 1 \\
2 x+y=5 & \text { eq. } 2
\end{array}
$$

1. Express both eq. in terms of the same value of x (or y)

$$
\begin{aligned}
& 4 x=11-3 y \\
& 4 x=10-2 y
\end{aligned}
$$

$$
\text { eq. } 1
$$

$$
\text { eq. } 2^{\prime}
$$

2. Substitute value of eq. 1 into eq. ${ }^{\prime}$ '

$$
\Rightarrow 11-3 y=10-2 y
$$

3. collect terms

$$
\begin{aligned}
& \Rightarrow 11-10=-2 y+3 y \\
& \Rightarrow 1=y
\end{aligned}
$$

4. now compute x

$$
\begin{aligned}
& \Rightarrow 4 x=10-2 y \\
& \Rightarrow 4 x=10-2=8 \\
& \Rightarrow x=2
\end{aligned}
$$

5. check the solution
\Rightarrow in both equations, when $\mathrm{x}=2, \mathrm{y}=1$
\Rightarrow the two lines intersect at $(2,1)$

Note that if the two functions do not intersect, then cannot solve equations simultaneously.....

$$
\begin{array}{ll}
x-2 y=1 & \text { eq. } 1 \\
2 x-4 y=-3 & \text { eq. } 2
\end{array}
$$

Step 1

$$
\begin{array}{ll}
2 x=2+4 y & \text { eq. } 1^{\prime} \\
2 x=-3+4 y & \text { eq. } 2
\end{array}
$$

Step 2

$$
\begin{aligned}
& 2+4 y=-3+4 y \quad \text { BUT }=> \\
& 2+3=0 \ldots \ldots \ldots . .
\end{aligned}
$$

No Solution to the System of Equations

Solving Linear Economic Models

Market Equilibrium
Quantity Demanded = Quantity Supplied
Finding the equilibrium price and quantity levels.....

In general,

Demand Function: $\quad \mathrm{Q}_{\mathrm{D}}=\mathrm{a}+\mathrm{bP}$ Supply Function: $\quad \mathrm{Q}_{\mathrm{S}}=\mathrm{c}+\mathrm{dP}$

- Set $\mathrm{Q}_{\mathrm{D}}=\mathrm{Q}_{\mathrm{S}}$ and solve simultaneously for $P^{\mathrm{e}}=(\mathrm{a}-\mathrm{c}) /(\mathrm{d}-\mathrm{b})$
- Knowing P^{e}, find Q^{e} given the demand/supply functions
- $\mathrm{Q}^{\mathrm{e}}=(\mathrm{ad}-\mathrm{bc}) /(\mathrm{d}-\mathrm{b})$

Eg. 1

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{D}}=50-\mathrm{P} \\
& \mathrm{Q}_{\mathrm{S}}=20+2 \mathrm{P} \tag{ii}
\end{align*}
$$

\Rightarrow Set $\mathbf{Q}_{\mathbf{D}}=\mathbf{Q}_{\mathbf{s}}$

$$
\begin{gathered}
50-\mathrm{P}=20+2 \mathrm{P} \\
3 \mathrm{P}=30 \\
\mathbf{P}=\mathbf{1 0}
\end{gathered}
$$

\Rightarrow Knowing \mathbf{P}, find \mathbf{Q}

$$
\begin{aligned}
\mathrm{Q} & =50-\mathrm{P} \\
& =50-10=40
\end{aligned}
$$

\Rightarrow Check the solution
i) $40=50-10$ and (ii) $40=20+(2 * 10)$

In both equations if $\mathbf{P = 1 0}$ then $Q=40$

Changes in Demand or Supply...

Shift the curves and results in a new equilibrium price and quantity

Section 2.2 Notes: Market Equilibrium + Excise Tax

Impose a tax t on suppliers per unit sold......
Shifts the supply curve to the left
$\mathrm{Q}_{\mathrm{D}}=\mathrm{a}+\mathrm{bP}$
$\mathrm{Q}_{\mathrm{S}}=\mathrm{d}+\mathrm{eP}$ with no tax
$\mathrm{Q}_{\mathrm{s}}=\mathrm{d}+\mathrm{e}(\mathrm{P}-\mathrm{t})$ with tax t on suppliers
$\mathrm{Q}_{\mathrm{D}}=50-\mathrm{P}$, and $\mathrm{Q}_{\mathrm{s}}=20+2 \mathrm{P}$ becomes
$\mathrm{Q}_{\mathrm{s}}=20+2(\mathrm{P}-\mathrm{t})$

Write Equilibrium P and Q as functions of t
\Rightarrow Set $\mathbf{Q}_{\mathbf{D}}=\mathbf{Q}_{\mathrm{s}}$

$$
\begin{aligned}
50-\mathrm{P} & =20+2(\mathrm{P}-\mathrm{t}) \\
30 & =3 \mathrm{P}-2 \mathrm{t} \\
3 \mathrm{P} & =30+2 \mathrm{t} \\
\mathrm{P} & =10+2 / 3 \mathrm{t}
\end{aligned}
$$

Consumer
Price

\Rightarrow Knowing P, find Q

$$
\begin{aligned}
\mathrm{Q} & =50-\mathrm{P} \\
& =50-(10+2 / 3 \mathrm{t}) \\
& =40-2 / 3 \mathrm{t}
\end{aligned}
$$

Comparative Statics: effect on P and Q of $\uparrow t$
(i) As $\uparrow t$, then $\uparrow P$ paid by consumers by $2 / 3$ t
\Rightarrow remaining tax $(1 / 3)$ is paid by suppliers

Consumers pay Suppliers pay
Price consumers pay - price suppliers receive $=$ total tax t
e.g. $\mathrm{t}=£ 3$

Consumer P: $£ 12$ (pre-tax eq. $p+2 / 3 t$)
Supplier P: $£ 9$ (pre-tax eq. $p-1 / 3 t$)
(ii) and $\downarrow \mathrm{Q}$ by ${ }^{2} / 3$ t, reflecting a shift to the left of the supply curve

Another Tax Problem....

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{D}}=132-8 \mathrm{P} \\
& \mathrm{Q}_{\mathrm{s}}=6+4 \mathrm{P}
\end{aligned}
$$

(i) Find the equilibrium P and Q.
(ii) How does a per unit tax t affect outcomes?
(iii) What is the equilibrium P and Q if unit $\operatorname{tax} t=4.5$?

Solution.....
(i) Equilibrium values
\Rightarrow Set $\mathbf{Q}_{\mathbf{D}}=\mathbf{Q}_{\mathbf{s}}$

$$
\begin{gathered}
132-8 \mathrm{P}=6+4 \mathrm{P} \\
12 \mathrm{P}=126 \\
\mathrm{P}=10.5
\end{gathered}
$$

$\Rightarrow \quad$ Knowing P, find \mathbf{Q}

$$
\begin{aligned}
\mathrm{Q} & =6+4 \mathrm{P} \\
& =6+4(10.5)=\mathbf{4 8}
\end{aligned}
$$

Equilibrium values: $\mathrm{P}=10.5$ and $\mathrm{Q}=48$
(ii) The comparative Statics of adding a tax......

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{D}} & =132-8 \mathrm{P} \\
\mathrm{Q}_{\mathrm{S}} & =6+4(\mathrm{P}-\mathrm{t})
\end{aligned}
$$

$$
\Rightarrow \text { Set } \mathbf{Q}_{\mathbf{D}}=\mathbf{Q}_{\mathrm{s}}
$$

$$
\begin{gathered}
132-8 P=6+4(P-t) \\
12 P=126+4 t \\
P=10.5+1 / 3 t
\end{gathered}
$$

$\Rightarrow \quad$ Knowing P, find \mathbf{Q}

$$
\begin{aligned}
\mathrm{Q} & =6+4[\mathrm{P}-\mathrm{t}] \\
& =6+4[(10.5+1 / 3 \mathrm{t})-\mathrm{t}] \\
& =48-8 / 3 \mathrm{t}
\end{aligned}
$$

Imposing $t=>\uparrow$ consumer P by $\frac{1}{3} \mathrm{t}$, supplier pays ${ }^{2} / 3$ t, and \downarrow Q by ${ }^{8} / 3$ t
(iii) If per unit $\mathbf{t}=4.5$

$$
\mathrm{P}=10.5+\frac{1}{3}(4.5)=12
$$

Consumer P: $£ 12$ (pre-tax eq. $p+1 / 3 t$) Supplier P: $£ 7.5$ (pre-tax eq. $p-2 / 3 t$)

$$
\mathrm{Q}=48-8 / 3(4.5)=36
$$

Market Equilibrium and Income
Increase in Income $\mathrm{Y}=>$ Shift Out of Demand Curve $=>\uparrow \mathrm{Q}_{\mathrm{D}}$ and $\uparrow \mathrm{P}$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{D}}=\mathrm{a}+\mathrm{bP}+\mathrm{cY} \\
& \mathrm{Q}_{\mathrm{S}}=\mathrm{d}+\mathrm{eP}
\end{aligned}
$$

Let,

$$
\begin{aligned}
& Q_{D}=200-2 P+1 / 2 Y \\
& Q_{S}=3 P-100
\end{aligned}
$$

Given the above Demand and Supply functions, what is the impact on the Market Equilibrium of Y increasing from 0 to 20?

$$
\begin{gathered}
\Rightarrow \text { Set } \mathbf{Q}_{\mathbf{D}}=\mathbf{Q}_{\mathbf{s}} \\
200-2 \mathrm{P}+1 / 2 \mathrm{Y}=3 \mathrm{P}-100 \\
5 \mathrm{P}=300+1 / 2 \mathrm{Y} \\
\mathrm{P}=60+{ }^{1} / 10 \mathrm{Y}
\end{gathered}
$$

$\Rightarrow \quad$ Knowing P, find \mathbf{Q}

$$
\begin{aligned}
\mathrm{Q} & =3\left(60+{ }^{1} / 10 \mathrm{Y}\right)-100 \\
& =80+{ }^{3} / 10 \mathrm{Y}
\end{aligned}
$$

As $\uparrow \mathrm{Y}=>\uparrow \mathrm{P}$ by ${ }^{1} / 10$ of $\uparrow \mathrm{Y}$, and $\uparrow \mathrm{Q}$ by $3 / 10$ of $\uparrow \mathrm{Y}$

What is equilibrium P and Q when Y $=20$
$\mathrm{P}=60+{ }^{1} /{ }_{10} \mathrm{Y}$
$P=60+{ }^{1} / 10(20)=62$
ie $\uparrow P$ by ${ }^{1} 10$ of $20=2$
$\mathrm{Q}=80+{ }^{3} /{ }_{10} \mathrm{Y}$
$\mathrm{Q}=80+{ }^{3} / 10(20)=86$
ie \uparrow P by ${ }^{3} / 10$ of $20=6$
$\mathrm{Qd}=200-2 \mathrm{P}+1 / 2 \mathrm{Y}$
Qs $=3 \mathrm{P}-100$

Finding Intercepts:
S (Q, P): $(-100,0)$ and $\left(0,33^{1} / 3\right)$
$\mathrm{Y}=0$:
D1 (Q,P): $(200,0)$ and $(0,100)$
$Y=20$:
D2 (Q,P): $(210,0)$ and $(0,105)$

