Lecture \# 14- Optimization of Functions of One Variable (cont.)

Extreme points for concave and convex functions

- We saw last lecture that x_{0} is a maximum point for $f(\cdot)$ if
- $f^{\prime}(x) \geq 0$ for $x \leq x_{0}$
- $f^{\prime}(x) \leq 0$ for $x \geq x_{0}$
- But, if a function satisfies $f^{\prime}(x) \geq 0$ for $x \leq x_{0}$, AND then $f^{\prime}(x) \leq 0$ for $x \geq x_{0}$, then we can say that the first order derivative is decreasing
- Recall that a function is said to be concave if $f^{\prime \prime}(x) \leq 0$, so that its first order derivative is decreasing
- Then:
- If $f(\cdot)$ is concave, and x_{0} is a stationary point for $f(\cdot)$, then x_{0} is a maximum point
- Similarly, we saw that x_{0} is a minimum point for $f(\cdot)$ if
- $f^{\prime}(x) \leq 0$ for $x \leq x_{0}$
- $f^{\prime}(x) \geq 0$ for $x \geq x_{0}$
- But, if a function satisfies $f^{\prime}(x) \leq 0$ for $x \leq x_{0}$, AND then $f^{\prime}(x) \geq 0$ for $x \geq x_{0}$, then the first order derivative is INcreasing
- Recall that a function is said to be convex if $f^{\prime \prime}(x) \geq 0$, so that its first order derivative is INcreasing
- Then:
- If $f(\cdot)$ is convex, and x_{0} is a stationary point for $f(\cdot)$, then x_{0} is a minimum point

Second-Order derivative test

- More general definition (for functions that are neither concave or convex)
- Suppose $f(\cdot)$ is twice differentiable in an interval I, and suppose x_{0} is an interior point of I
- If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is a (strict) maximum point
- If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is a (strict) minimum point
- If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)=0$, then
* we can use the first order derivative test OR
* use a more powerful test (see next page)

Example $1 y=x^{3}-12 x^{2}+36 x+8$

- First order condition: $f^{\prime}(x)=3 x^{2}-24 x+36=0$. The solutions to the quadratic equation are $x=6$ and $x=2$. So there are two stationary points.
- Second order condition: $f^{\prime \prime}(x)=6 x-24$
* $f^{\prime \prime}(6)=6(6)-24=12>0 \rightarrow x=6$ is a minimum point
* $f^{\prime \prime}(2)=6(2)-24=-12>0 \rightarrow x=2$ is a maximum point

Example 2 Suppose $y=x^{4}$

- First order condition: $f^{\prime}(x)=4 x^{3}=0$. The unique solution is $x=0$, which will be the stationary point.
- Second order condition: $f^{\prime \prime}(x)=12 x^{2}$, so $f^{\prime \prime}(0)=0$ and the second derivative test is inconclusive.

Example 3 Suppose $y=x^{3}$

- First order condition: $f^{\prime}(x)=3 x^{2}=0$. The unique solution is $x=0$, which will be the stationary point.
- Second order condition: $f^{\prime \prime}(x)=6 x$, so $f^{\prime \prime}(0)=0$ and the second derivative test is inconclusive.

Nth Derivative Test

- When the second derivative, evaluated at the stationary point, is $f^{\prime \prime}\left(x_{0}\right)=0$, then we need a more powerful test \rightarrow the Nth Derivative Test
- The Nth Derivative Test is based on the Taylor polynomial
- Suppose $f(\cdot)$ is continuously differentiable in an interval I, and suppose x_{0} is an interior point of I. Further suppose $f^{\prime \prime}\left(x_{0}\right)=0$
- Suppose that the Nth derivative of $f(\cdot)$ is the first one that is NOT zero when evaluated at x_{0}. In math terms, $f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}\left(x_{0}\right)=f^{(4)}\left(x_{0}\right)=\ldots=f^{(N-1)}\left(x_{0}\right)=0$, but $f^{(N)}\left(x_{0}\right) \neq 0$
- If N is an even number, and $f^{(N)}\left(x_{0}\right)<0$, then x_{0} is a (strict) maximum point.
- If N is an even number, and $f^{(N)}\left(x_{0}\right)>0$, then x_{0} is a (strict) minimum point.
- If N is an odd number, then x_{0} is an inflection point (neither a maximum nor a minimum)

Example 4 Suppose $y=x^{4}$

- First order condition: $f^{\prime}(x)=4 x^{3}=0$. The unique solution is $x=0$, which will be the stationary point.
- Second derivative: $f^{\prime \prime}(x)=12 x^{2}$, so $f^{\prime \prime}(0)=0$.
- Third derivative: $f^{\prime \prime \prime}(x)=24 x$, so $f^{\prime \prime \prime}(0)=0$.
- Fourth derivative: $f^{(4)}(x)=24>0$, so x_{0} is a minimum point.

Example 5 Suppose $y=x^{3}$

- First order condition: $f^{\prime}(x)=3 x^{2}=0$. The unique solution is $x=0$, which will be the stationary point.
- Second order condition: $f^{\prime \prime}(x)=6 x$, so $f^{\prime \prime}(0)=0$.
- Third derivative: $f^{\prime \prime \prime}(x)=6$, so since $N=3, x_{0}$ is an inflection point.

Other critical values

- We have defined tests for local (or relative) maximum and minimum.at the interior of the domain of a particular function
- Such tests assume that
- the function is differentiable at all points
- the end points of the domain (or interval) are not important
- BUT, we need to consider those points as well
- So to find possible local maxima and minima for a function $f(\cdot)$ defined in an interval I, we search among the following types of points:
- Interior points in I where $f^{\prime}(x)=0$
- End points of I (if included in I)
- Interior points in I where f^{\prime} does not exist.

Example 6 Consider again $y=x^{3}-12 x^{2}+36 x+8$. We found that:
$-x=6$ is a local minimum point. In fact the value of the function at $x=6$ is $f(6)=8$
$-x=2$ is a local maximum point.In fact the value of the function at $x=2$ is $f(2)=40$
The function is differentiable at all points, so there is no point at which f^{\prime} does not exist However, the end points may matter. Suppose the function is defined in the interval $I=$ $[-2,10]$. Then:

- The value of the function at $x=10$ is $f(10)=336$. So $x=10$ is also a local maximum point.
- The value of the function at $x=-2$ is $f(-2)=-120$. So $x=-2$ is also a local minimum point

Economic Examples:

1. Production with one input

- Suppose we are farmers, producing corn, and we use only one input, say labor, called L. So the production function is $Y=F(L)$
- Suppose P is the price of corn, and w is the price of labor (i.e., the wage rate)
- Profits are then $\Pi(L)=P \cdot F(L)-w L$
- Firms will choose the amount of labor L^{*} so that profits will be maximized at the point where $\Pi^{\prime}\left(L^{*}\right)=0$. Such condition can be written as:

$$
\begin{equation*}
P \cdot F^{\prime}\left(L^{*}\right)=w \tag{1}
\end{equation*}
$$

- Note: we will obviously need that
$-\Pi^{\prime}(L) \geq 0$ for $L \leq L^{*}$ AND $\Pi^{\prime}(L) \leq 0$ for $L \geq L^{*}$
$-\operatorname{OR} \Pi^{\prime \prime}\left(L^{*}\right)=P \cdot F^{\prime \prime}\left(L^{*}\right)<0$
- Economic interpretation of first order condition (1) :
- If we increase labor (say, by a unit), we produce $F^{\prime}(L)$ more units of corn. So the left hand side is the value of additional units of corn produced when we increase labor.
- On the right hand side, we have the cost of increasing labor, which is equal to the wage
- If $P \cdot F^{\prime}\left(L^{*}\right)>w$, then we should increase labor, because the gains from it exceed our losses
- If $P \cdot F^{\prime}\left(L^{*}\right)<w$, then we should DEcrease labor, because the gains from labor do not compensate our losses
- So we should increase the amount of labor up to the point L^{*} at which our gains and losses are equal.

Example 7 Suppose $F(L)=\sqrt{L}, P=20$ and $w=1$

- Equation (1) is $10 L^{-\frac{1}{2}}=1$ so $L^{*}=10$.
- Second order condition: $\Pi^{\prime \prime}\left(L^{*}\right)=10 \cdot F^{\prime \prime}\left(L^{*}\right)=-5 L^{-\frac{3}{2}}<0$ for any $L>0$

2. Profit maximization

- Suppose a profit-maximizing firm produces a single commodity
- Total revenue is a function of its quantity produced: $R(Q)$
- The associated total cost function is $C(Q)$
- Then profits are $\Pi(Q)=R(Q)-C(Q)$
- Suppose there is a mzimum quantity \bar{Q} that the firm can produce in a given period. So the relevant interval is $[0, \bar{Q}]$
- Then the first order condition is $\Pi^{\prime}\left(Q^{*}\right)=R^{\prime}\left(Q^{*}\right)-C^{\prime}\left(Q^{*}\right)=0$, or $R^{\prime}\left(Q^{*}\right)=C^{\prime}\left(Q^{*}\right)$. In words, at the production level Q^{*} profits reach a maximum, and at such point marginal revenue equals marginal cost
- Economic interpretation
- If $R^{\prime}\left(Q^{*}\right)>C^{\prime}\left(Q^{*}\right)$, then increasing production will raise our revenue by more than the raise in our cost \Longrightarrow increase production
- If $R^{\prime}\left(Q^{*}\right)<C^{\prime}\left(Q^{*}\right)$, then increasing production will raise our cost by more than the raise in our revenue \Longrightarrow decrease production
- So in equilibrium the marginal revenue of selling an extra unit is equal to the marginal cost of producing that unit.
- Note 1: we will obviously need that
- $\Pi^{\prime}(Q) \geq 0$ for $Q \leq Q^{*}$ AND $\Pi^{\prime}(Q) \leq 0$ for $Q \geq Q^{*}$
$-\operatorname{OR} \Pi^{\prime \prime}\left(Q^{*}\right)=P \cdot F^{\prime \prime}\left(Q^{*}\right)<0$
- Note 2: In special cases, it is possible that the maximum occur at $Q=0$ or $Q=\bar{Q}$.

3. Profit maximization of a perfectly-competitive firm

- Suppose the firm gets a fixed price P for its product.
- Then $R(Q)=P Q$, so $R^{\prime}(Q)=P$. In words, when a firm takes price as given, marginal revenue equals price
- Then the first order condition takes the form: $P=C^{\prime}\left(Q^{*}\right)$

Example 8 Suppose $P=80$ and $C(Q)=100+10 Q+\frac{1}{2} Q^{2}$. Also suppose $\bar{Q}=100$
Then $R^{\prime}(Q)=P=80$. And $C^{\prime}(Q)=10+Q$. So $Q^{*}=70$
Then $\Pi(80)=(80)(70)-C(70)=5600-3250=2350$
Notice also that $\Pi(0)=0-C(0)=-100$, while $\Pi(\bar{Q})=(80)(100)-C(100)=1900$
Example 9 Suppose now that $P=120$
Then $R^{\prime}(Q)=P=120$. And $C^{\prime}(Q)=10+Q$. So $Q^{*}=110$
But $Q^{*}=110$ is outside the range, so we must look at the end points
$\Pi(0)=0-C(0)=-100$, while $\Pi(\bar{Q})=(120)(100)-C(100)=12000-6100=5900$
So the firm will produce at $\bar{Q}=100$

4. Profit maximization of a monopolist firm

- Suppose the monopolist faces an inverse demand $P(Q)$
- Then $R(Q)=P(Q) \cdot Q$, and $R^{\prime}(Q)=P^{\prime}(Q) \cdot Q+P(Q)$
- Notice that, since $P^{\prime}(Q)<0$, then $R^{\prime}(Q)<P(Q)$.
- Then the first order condition becomes: $P^{\prime}(Q) \cdot Q+P(Q)=C^{\prime}\left(Q^{*}\right)$

Example 10 Suppose $P=110-2 Q$
Then $R^{\prime}(Q)=P^{\prime}(Q) \cdot Q+P(Q)=(-2) Q+110-2 Q=110-4 Q$
As before, $C^{\prime}(Q)=10+Q$.
So $110-4 Q=10+Q$., and the solution is $Q^{*}=20$, and the price is $P=80-2(20)=40$
Then $\Pi(20)=(40)(20)-C(20)=800-500=300$
Notice also that $\Pi(0)=0-C(0)=-100$, while $\Pi(\bar{Q})$ cannot be defiined because $P(100)=110-2(100)=-90<0$

