
Lecture # 14 - Optimization of Functions of One Variable (cont.)

Extreme points for concave and convex functions

• We saw last lecture that x0 is a maximum point for f (·) if

— f 0 (x) ≥ 0 for x ≤ x0

— f 0 (x) ≤ 0 for x ≥ x0

• But, if a function satisfies f 0 (x) ≥ 0 for x ≤ x0, AND then f 0 (x) ≤ 0 for x ≥ x0, then we

can say that the first order derivative is decreasing

• Recall that a function is said to be concave if f 00 (x) ≤ 0, so that its first order derivative is
decreasing

• Then:

— If f (·) is concave, and x0 is a stationary point for f (·) , then x0 is a maximum point

• Similarly, we saw that x0 is a minimum point for f (·) if

— f 0 (x) ≤ 0 for x ≤ x0

— f 0 (x) ≥ 0 for x ≥ x0

• But, if a function satisfies f 0 (x) ≤ 0 for x ≤ x0, AND then f 0 (x) ≥ 0 for x ≥ x0, then the

first order derivative is INcreasing

• Recall that a function is said to be convex if f 00 (x) ≥ 0, so that its first order derivative is
INcreasing

• Then:

— If f (·) is convex, and x0 is a stationary point for f (·) , then x0 is a minimum point
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Second-Order derivative test

• More general definition (for functions that are neither concave or convex)

• Suppose f (·) is twice differentiable in an interval I, and suppose x0 is an interior point of
I

— If f 0 (x0) = 0 and f” (x0) < 0, then x0 is a (strict) maximum point

— If f 0 (x0) = 0 and f” (x0) > 0, then x0 is a (strict) minimum point

— If f 0 (x0) = 0 and f” (x0) = 0, then

∗ we can use the first order derivative test OR
∗ use a more powerful test (see next page)

Example 1 y = x3 − 12x2 + 36x+ 8

— First order condition: f 0 (x) = 3x2 − 24x + 36 = 0. The solutions to the quadratic

equation are x = 6 and x = 2. So there are two stationary points.

— Second order condition: f 00 (x) = 6x− 24
∗ f 00 (6) = 6 (6)− 24 = 12 > 0→ x = 6 is a minimum point

∗ f 00 (2) = 6 (2)− 24 = −12 > 0→ x = 2 is a maximum point

Example 2 Suppose y = x4

— First order condition: f 0 (x) = 4x3 = 0. The unique solution is x = 0, which will be

the stationary point.

— Second order condition: f 00 (x) = 12x2, so f 00 (0) = 0 and the second derivative test is

inconclusive.

Example 3 Suppose y = x3

— First order condition: f 0 (x) = 3x2 = 0. The unique solution is x = 0, which will be

the stationary point.

— Second order condition: f 00 (x) = 6x, so f 00 (0) = 0 and the second derivative test is

inconclusive.
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Nth Derivative Test

• When the second derivative, evaluated at the stationary point, is f 00 (x0) = 0, then we need
a more powerful test → the Nth Derivative Test

• The Nth Derivative Test is based on the Taylor polynomial

• Suppose f (·) is continuously differentiable in an interval I, and suppose x0 is an interior
point of I. Further suppose f 00 (x0) = 0

• Suppose that the Nth derivative of f (·) is the first one that is NOT zero when evaluated at
x0. In math terms, f 00 (x0) = f 000 (x0) = f (4) (x0) = ... = f (N−1) (x0) = 0, but f (N) (x0) 6= 0

— If N is an even number, and f (N) (x0) < 0, then x0 is a (strict) maximum point.

— If N is an even number, and f (N) (x0) > 0, then x0 is a (strict) minimum point.

— If N is an odd number, then x0 is an inflection point (neither a maximum nor a

minimum)

Example 4 Suppose y = x4

— First order condition: f 0 (x) = 4x3 = 0. The unique solution is x = 0, which will be

the stationary point.

— Second derivative: f 00 (x) = 12x2, so f 00 (0) = 0.

— Third derivative: f 000 (x) = 24x, so f 000 (0) = 0.

— Fourth derivative: f (4) (x) = 24 > 0, so x0 is a minimum point.

Example 5 Suppose y = x3

— First order condition: f 0 (x) = 3x2 = 0. The unique solution is x = 0, which will be

the stationary point.

— Second order condition: f 00 (x) = 6x, so f 00 (0) = 0.

— Third derivative: f 000 (x) = 6, so since N = 3, x0 is an inflection point.
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Other critical values

• We have defined tests for local (or relative) maximum and minimum.at the interior of the

domain of a particular function

• Such tests assume that

— the function is differentiable at all points

— the end points of the domain (or interval) are not important

• BUT, we need to consider those points as well

• So to find possible local maxima and minima for a function f (·) defined in an interval I,
we search among the following types of points:

— Interior points in I where f 0 (x) = 0

— End points of I (if included in I)

— Interior points in I where f 0 does not exist.

Example 6 Consider again y = x3 − 12x2 + 36x+ 8. We found that:

— x = 6 is a local minimum point. In fact the value of the function at x = 6 is f (6) = 8

— x = 2 is a local maximum point.In fact the value of the function at x = 2 is f (2) = 40

The function is differentiable at all points, so there is no point at which f 0 does not exist

However, the end points may matter. Suppose the function is defined in the interval I =

[−2, 10] . Then:

— The value of the function at x = 10 is f (10) = 336. So x = 10 is also a local maximum

point.

— The value of the function at x = −2 is f (−2) = −120. So x = −2 is also a local
minimum point
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Economic Examples:

1. Production with one input

• Suppose we are farmers, producing corn, and we use only one input, say labor, called
L. So the production function is Y = F (L)

• Suppose P is the price of corn, and w is the price of labor (i.e., the wage rate)

• Profits are then Π (L) = P · F (L)− wL

• Firms will choose the amount of labor L∗ so that profits will be maximized at the
point where Π0 (L∗) = 0. Such condition can be written as:

P · F 0 (L∗) = w (1)

• Note: we will obviously need that
— Π0 (L) ≥ 0 for L ≤ L∗ AND Π0 (L) ≤ 0 for L ≥ L∗

— OR Π00 (L∗) = P · F 00 (L∗) < 0
• Economic interpretation of first order condition (1) :

— If we increase labor (say, by a unit), we produce F 0 (L) more units of corn. So the

left hand side is the value of additional units of corn produced when we increase

labor.

— On the right hand side, we have the cost of increasing labor, which is equal to the

wage

— If P ·F 0 (L∗) > w, then we should increase labor, because the gains from it exceed

our losses

— If P · F 0 (L∗) < w, then we should DEcrease labor, because the gains from labor

do not compensate our losses

— So we should increase the amount of labor up to the point L∗ at which our gains

and losses are equal.

Example 7 Suppose F (L) =
√
L, P = 20 and w = 1

— Equation (1) is 10L−
1
2 = 1 so L∗ = 10.

— Second order condition: Π00 (L∗) = 10 · F 00 (L∗) = −5L−3
2 < 0 for any L > 0
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2. Profit maximization

• Suppose a profit-maximizing firm produces a single commodity

— Total revenue is a function of its quantity produced: R (Q)

— The associated total cost function is C (Q)

• Then profits are Π (Q) = R (Q)− C (Q)

• Suppose there is a mzimum quantity Q that the firm can produce in a given period.

So the relevant interval is
£
0,Q

¤
• Then the first order condition is Π0 (Q∗) = R0 (Q∗)−C 0 (Q∗) = 0, or R0 (Q∗) = C 0 (Q∗) .

In words, at the production level Q∗ profits reach a maximum, and at such point

marginal revenue equals marginal cost

• Economic interpretation
— If R0 (Q∗) > C 0 (Q∗) , then increasing production will raise our revenue by more

than the raise in our cost =⇒ increase production

— If R0 (Q∗) < C 0 (Q∗) , then increasing production will raise our cost by more than

the raise in our revenue=⇒ decrease production

— So in equilibrium the marginal revenue of selling an extra unit is equal to the

marginal cost of producing that unit.

• Note 1: we will obviously need that
— Π0 (Q) ≥ 0 for Q ≤ Q∗ AND Π0 (Q) ≤ 0 for Q ≥ Q∗

— OR Π00 (Q∗) = P · F 00 (Q∗) < 0
• Note 2: In special cases, it is possible that the maximum occur at Q = 0 or Q = Q.
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3. Profit maximization of a perfectly-competitive firm

• Suppose the firm gets a fixed price P for its product.

• Then R (Q) = PQ, so R0 (Q) = P. In words, when a firm takes price as given, marginal

revenue equals price

• Then the first order condition takes the form: P = C 0 (Q∗)

Example 8 Suppose P = 80 and C (Q) = 100 + 10Q+ 1
2Q

2. Also suppose Q = 100

Then R0 (Q) = P = 80. And C 0 (Q) = 10 +Q. So Q∗ = 70

Then Π(80) = (80) (70)−C (70) = 5600− 3250 = 2350
Notice also that Π (0) = 0−C (0) = −100, while Π ¡Q¢ = (80) (100)−C (100) = 1900

Example 9 Suppose now that P = 120

Then R0 (Q) = P = 120. And C 0 (Q) = 10 +Q. So Q∗ = 110

But Q∗ = 110 is outside the range, so we must look at the end points

Π (0) = 0−C (0) = −100, while Π ¡Q¢ = (120) (100)−C (100) = 12000−6100 = 5900
So the firm will produce at Q = 100
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4. Profit maximization of a monopolist firm

• Suppose the monopolist faces an inverse demand P (Q)

• Then R (Q) = P (Q) ·Q, and R0 (Q) = P 0 (Q) ·Q+ P (Q)

— Notice that, since P 0 (Q) < 0, then R0 (Q) < P (Q) .

• Then the first order condition becomes: P 0 (Q) ·Q+ P (Q) = C 0 (Q∗)

Example 10 Suppose P = 110− 2Q
Then R0 (Q) = P 0 (Q) ·Q+ P (Q) = (−2)Q+ 110− 2Q = 110− 4Q
As before, C 0 (Q) = 10 +Q.

So 110−4Q = 10+Q., and the solution is Q∗ = 20, and the price is P = 80−2 (20) = 40
Then Π(20) = (40) (20)−C (20) = 800− 500 = 300
Notice also that Π (0) = 0 − C (0) = −100, while Π ¡Q¢ cannot be defiined because
P(100) = 110− 2 (100) = −90 < 0
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