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Abstract

While city size and growth are the subject of a substantial literature, consensus
is lacking on the extent to which Zipf’s Law or Gibrat’s Law holds across space
and time. We examine city size, rank and growth in Britain 1801-2011 and show
conclusions depend on city definition, sample cutoff and regression methods. We
find Zipf’s Law cannot be rejected under the strongest combination of data and
methods, unlike if other data or methods are used. Across Zipf, Gibrat and Gini
analyses, we find that urban concentration in Britain peaked in the mid-19th cen-
tury but fell 1861-1911 and 1951-1991.

Keywords: Great Britain; Zipf’s Law; urban growth; Gibrat’s Law.
JEL codes: N9; O18; R11; R12.

1



1 Introduction

Over the last two centuries, cities have become integral to the global economy and to
human experience. The fraction of the global population living in cities is estimated
to have been just 10% in 1800 but, by 2010, more than half the world’s population
lived in cities (UN-DESA, 2018). Understanding patterns of city growth, therefore,
will be central in accommodating an additional three billion city-dwellers over coming
decades. At the heart of patterns of city size and growth are Zipf’s Law (Zipf, 1965)
and Gibrat’s Law (Gibrat, 1931). Zipf’s Law holds that the relationship between a city’s
size and its rank is unit elastic – in other words, a 10% increase in a city’s population
leads to a 10% fall in its rank. It is described by Krugman (1996) as “one of the most
overwhelming empirical regularities in economics”. Gibrat’s Law holds that there is
no systematic relationship between a city’s initial size and its subsequent growth rate.

In this paper, we examine the relationship between city size and both city rank and
subsequent city growth, over the last two centuries in (Great) Britain. We supplement
these investigations of both Zipf’s and Gibrat’s Law in the world’s first urbanized econ-
omy with an analysis of urban concentration using the Gini coefficient, as suggested by
Henderson and Wang (2007). To do this, we assemble for the first time comprehensive
data for all cities in Britain across 19 Censuses between 1801 and 2011. Our dataset
allows us to measure cities in four different ways – local government districts, unitary
authorities, primary urban areas, and travel-to-work areas – across four different sta-
tistical cutoffs for city size. In addition, we also compare across methods suggested by
the literature, including parametric and non-parametric methods, and in the case of the
“Zipf” exponent, with and without correcting for bias in the coefficient and also in the
standard error.

Both Zipf’s and Gibrat’s Laws are the subject of intense debate among researchers,
with deep implications for policymakers. Our paper contributes to this extensive lit-
erature on city size, rank and performance and in particular aims to bring clarity to
researchers looking to test for the presence of either law in empirical settings. Sem-
inal contributions include Auerbach (1913), who identified a size-rank relationship
for cities, Gibrat (1931), who showed that a proportionate growth process delivers a
Pareto distribution in the upper tail, and Zipf (1965), who found a similar relationship
more broadly, including in word frequency.1 Gabaix (1999a) connected Zipf’s Law
and Gibrat’s Law, by noting that the random growth in city populations (or popula-
tion shares) described by Gibrat would lead to the city size-rank relationship described
by Zipf. While many authors note the occurrence of Zipf’s Law in very different ge-
ographies and time periods, some have emphasised deviations. Using the well-known
Bairoch et al. (1988) dataset of European city populations over time, Dittmar (2020)
shows the emergence of Zipf’s Law across Western and Eastern Europe at different
points in the transition from the medieval period to the modern period. Soo (2005)
uses size-rank distributions at a country level to build a dataset of coefficients and con-
cludes, based principally on municipal definitions of cities and OLS estimators, that
the coefficient on the Pareto distribution differs from one in the majority of cases.

However, Soo’s results for urban agglomerations – available for a much smaller
number of countries – suggest the opposite result, highlighting the importance of city
definition and methodology. Dingel et al. (2019) examine the city size-rank relationship
for three large developing countries – Brazil, China and India – using nightlights to es-

1For a review of the literature that started with Gibrat’s work, see Sutton (1997).
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timate true urban agglomerations. They find that, while the size and rank of official
municipalities does not follow a linear relationship, the relationship measured using
urban agglomerations does. The literature on Gibrat’s Law is equally diverse. An im-
portant contribution to this literature is Glaeser et al. (2014), who explore the dynamics
of county growth in parts of the USA 1790-2000. While they find evidence in favor of
Gibrat’s Law for the sample as a whole, this does not hold for long sub-periods, with
less populous counties growing faster before 1860 and after 1970. This raises the pos-
sibility that occurrences of Gibrat’s Law are an artefact of the accidental balancing of
centripetal and centrifugal forces over different time periods.

We believe our paper makes five principal contributions. Firstly, ours is the first
study in the literature to examine Zipf’s and Gibrat’s Laws in Britain over the long-run.
Britain is of wider interest as it was home to the Industrial Revolution and, related, the
world’s urbanized economy. Secondly, we highlight the importance of research design
in examining whether Zipf’s Law holds, with spurious results common where arbi-
trary city definitions or cut-offs are used, in addition to bias and false precision. Using
the same setting, we show the Pareto exponent can vary dramatically across 48 speci-
fications in total: three different definitions of city available in our setting, four differ-
ent sample cut-offs, and with four sets of results for each of these twelve unit-cutoff
pairings – the standard (biased) OLS estimator and the unbiased estimator, each with
unadjusted and adjusted standard errors (SEs). Thirdly, we find that we are unable
to reject Zipf’s Law in any of the 19 Census years under the strongest set-up – using
primary urban areas, with a conservative cutoff, the unbiased estimator, and adjusted
SEs. This is due not only to the point estimate but also to the necessary lack of pre-
cision in an urban system with approximately 60 true cities. Fourthly, our analysis of
whether Gibrat’s Law holds finds evidence against it holding in the period 1861-1911,
where there is a strong negative relationship between initial size and fifty-year growth.
In later periods, there is only modest evidence for such a link. Finally, across all three
sets of analysis, we find evidence of rising inequality in city populations in the early
19th century, followed by greater compression across cities in the following century
and a half. This is seen both in the point estimate of the Pareto exponent, which falls
until 1861 then rises, and in the Gini coefficient of urban population, following Hen-
derson and Wang (2007). Similarly, deviations from Gibrat’s Law point to smaller cities
enjoying faster growth after 1861 (and in particular before 1911 and after 1951).

Our paper is structured as follows. In Section 2, we review the underlying theory,
both of power laws more generally and relating to exponents and cutoffs for samples,
more specifically, and briefly review the existing empirical literature on the city-size
distribution, paying particular attention to the city definitions, sample cutoffs and es-
timation methods used. Thereafter, in Section 3, we introduce our data on British city
populations since 1801, and in Section 4, we outline the results of our empirical analy-
sis, before the paper concludes.

2 Theory & Evidence

2.1 Power Laws

Power laws are ubiquitous in nature. Newman (2005) lists a number of physical, bio-
logical, and man-made phenomena where power laws are observed, including distri-
butions of size frequency and volume. Examples are found in the size of earthquakes,
moon craters, solar flares, computer files, and wars; the frequency of use of words in
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any human language and of personal names in most cultures; and the volume of pa-
pers scientists write, of citations received by papers, of visits to web pages, of sales of
books and almost all branded commodities.

Mathematically, a power law function is a relationship between two quantities,
where a relative change in one quantity results in a proportional relative change in
the other. More precisely, one quantity varies as the power of another, independent of
their initial size:

f(x) = ax−k

The fundamental characteristic of this kind of relationship is scale invariance. This im-
plies that scaling the argument of a power law function causes a proportionate scaling
of the function itself:

f(cx) = a(cx)−k for k > 0

This is important because it implies that we can observe a linear relation in log-log,
which is the most straightforward way to test for the existence of power law behaviour.

Much of the interest in power laws comes from the study of the probability dis-
tribution and its application to probability theory and statistics. Strictly, a power law
function cannot be a probability distribution as, for any value of the exponent, its inte-
gral diverges either in zero or infinity. Consequently, it is necessary to define its sup-
port greater than a lower cutoff xmin (or smaller than an upper cutoff), and multiply it
by a scaling parameter C, so that its integral meets the necessary unity condition of a
probability distribution.

A Pareto distribution is a particular type of power law, which is mostly used in
social science. If X is a continuous random variable following a Pareto distribution,
then its density distribution function is given by:

fX(x) =
ζxζmin
xζ+1

1[x>xmin](x)

and its cumulative distribution is:

P (X < x) =

∫ x

xmin

ζxζmin
xζ+1

dx = 1−
(
xmin
x

)ζ
Where the Pareto exponent (ζ) takes a value, in absolute terms, of 1, this is called Zipf’s
law. This regularity is found in a variety of situations and it is so called because it was
initially observed by Zipf (1965) in the distribution of words’ length.

Our focus is city size. To understand how Zipf’s Law can be applied in this context,
consider the probability (P ) that the size of a given city S is greater than a certain
value s. Where G is the survival function of a city’s size and r is the city’s rank, this
probability is proportional to its rank:

G(S) = P (S > s) ∝ r(S) (1)

Where G(S) takes the form of a power law and θ refers to its exponent, then:

G(S) =
k

Sθ
(2)

Combining equation (1) and (2) together, it follows that:

G(S) = P (S > s) =
k

Sθ
∝ r(S)⇒ r(S) =

k

Sθ
(3)

4



In this way, we obtain a specific inverse relationship between rank and the size.
Where β = 1/θ, G(R) is the distribution of rank and k is a normalising constant, this
relationship can also be expressed in the opposite way, as follows:

G(R) = P (R > r) =
k1/θ

S1/θ
∝ S(r)⇒ S(r) =

k1/θ

S1/θ
=
kβ

Sβ
=

(
k

S

)β
(4)

This gives the exact same relation as in (3) but reversed, i.e. the probability that the
rank R is greater than a given r is proportional to city’s size. Zipf’s Law is said to
hold if β = −1. An important distinction is needed between rejection of Zipf’s Law,
where the exponent is statistically different from −1 but the relation may still be log-
linear, and rejection of a Pareto distribution, where the log-linear relationship is rejected
altogether.2

Before Gabaix (1999a), the unit value of the distribution parameter had remained
unexplained. Gabaix’s random growth model offers a theoretical explanation for the
emergence of Zipf’s law, both for cities and for other phenomena. He shows that, if we
assume one (proportional) growth process for cities above some minimum size, i.e. that
cities grow independent of their size (Gibrat’s Law), then the steady state distribution
of such a process is a power law with exponent 1. The conditions for this to hold are
that cities grow on average at the same pace and with the same variance and that the
smallest city in the distribution is very small as a proportion of the total urban popu-
lation. Most other models in more recent papers that involve the Zipf exponent, such
as those by Córdoba (2008) and Dittmar (2020), ultimately rely on the same underlying
principle to explain its emergence. An exception is Rossi-Hansberg and Wright (2007),
who use a general equilibrium model where cities specialise in particular final goods.
In their model, Zipf’s Law emerges as cities reach efficient size given their specializa-
tion, but only where labour is perfectly mobile and not a factor of production.

2.2 Cutoffs and Exponents

As described above, two factors characterize a power law distribution: its exponent
and the lower or upper cutoff – in the case of city size distributions, the lower cutoff
is the minimum city size. Despite its importance and its relationship with the value
of the exponent, there has been very little debate on the estimation of the lower cutoff
(Eeckhout, 2004). The majority of the related literature uses a data-driven cutoff (for
example: Davis & Weinstein, 2002; Dittmar, 2020; Dobkins & Ioannides, 2001; Dobkins,
Ioannides, et al., 2000; Eaton & Eckstein, 1997; Ioannides & Overman, 2003; Soo, 2005).
An alternative approach, used by Eeckhout (2004), is to set the cutoff at an arbitrary
level to encompass different quantiles of the population. Only Muller (2016), in exam-
ining air pollution, uses a statistically defined cutoff.

Given the importance of the cutoff, we set out below four different approaches to
its definition. These four approaches are then used to inform the empirical analysis.

1. Level cutoff: This is the most common method employed in the literature so
far (see for example Dittmar, 2020; Dobkins, Ioannides, et al., 2000; Ioannides
& Overman, 2003). Particularly where the empirical setting is the USA, a value

2In his paper, for example, Dittmar (2020) fails to reject a Pareto distribution on the Bairoch dataset after
1500 but he does not test the value of the exponent. This implies, strictly speaking, that he is testing for
the emergence of a Pareto distribution but not of Zipf’s Law, following the glossary provided by Gabaix
(2009).
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of 50,000 is most common, reflecting the fact that the US Census Bureau reports
data on Metropolitan Areas of 50,000 inhabitants and above, from 1898. This level
cutoff is then constant throughout the period of analysis. While easy to under-
stand, it means that, where population levels change significantly over the period
of analysis, the composition of cities included over time can change significantly,
relative to the distribution as a whole.

2. Fraction cutoff: An alternative heuristic approach is to take a certain fraction of
the distribution in each year; Cheshire (1999) mentions this as one of the options
to set the cutoff. This has the advantage over a level cutoff of a relatively even
sample size, especially over longer periods of analysis, during which city pop-
ulations may have changed by an order of magnitude. Another feature of this
approach is its focus on the top fraction of the distribution; the relationship be-
tween city size and rank may differ within this set of cities compared to the full
distribution of cities.

3. Conservative cutoff: Clauset et al. (2009) describe a process for selecting the cut-
off. Firstly, the power law exponent is estimated for each possible xmin in the
dataset. Secondly, using a Kolmogorov-Smirnov test to calculate distance, the
cutoff is chosen as the one in the exponent-cutoff pair which minimises the dis-
tance to a theoretical power law distribution with the same parameters. For each
xmin, the test also returns the p-value for the null hypothesis of a Pareto distribu-
tion. Of the tests, it tends to keep a bigger portion of the sample and is, therefore,
referred to as the conservative cutoff.

4. Deviation cutoff: The fourth cutoff uses the method outlined in Gabaix and
Ibragimov (2011) and applied in Rozenfeld et al. (2011). Here OLS is used to
estimate the relationship (in logs) between a city’s rank and both its size and the
square of size minus γ, where γ = (cov(log2(size), log(size))/(2var(log(size)).
More formally:

log(Rank − 0.5) = β0 − β1log(size) + β2log(size− γ)2 (5)

As explained in Rozenfeld et al. (2011), the test formalizes the intuition that high
values of β2 indicate deviations from a power law because, in the limit, a true
power law will have β2 = 0. They outline a critical value for β2, at the 1 percent
confidence level. If the absolute value of β2 is greater than this critical value, βc,
the null hypothesis of a power law is rejected. This allows the calculation of a
sample size, based on repeatedly extending the sample until the coefficient β2 is
statistically significant.

For a given sample size, the main approaches for estimating the Pareto exponent and
the Gibrat coefficient are described below.

Zipf’s Law Despite the problems pointed out by Gabaix and Ioannides (2004), the
OLS estimator is the most common method used in the literature for the estimation of
the Pareto exponent (see, among others, Eeckhout, 2004; Rosen & Resnick, 1980; Soo,
2005, and Table 1, where we summarize 22 of the key papers in the literature). The
issues arising with this estimator are its biasedness and its underestimation of the stan-
dard error. One can interpret the origin of the bias in the following way: the expected
value of the ratio between S(2) and S(1) is 0.5, but the smallest 95% confidence interval
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for S(1)/S(2) is [1,20]. So typically, the value of S(1) will be above the value predicted by
the linear regression with slope -1. In other words, the size of the largest city will look
“too big”. The underestimation of the standard error on the other hand derives from
the fact that the ranking procedure creates positive correlations between the residuals,
whereas the OLS standard error assumes that the errors are independent.

An alternative is to use the Hill estimator, which is the maximum likelihood estima-
tor for a power law, available in closed form. Gabaix and Ioannides (2004) show that
it also delivers a biased standard error. An easy correction for both issues in the OLS
case – bias in the estimator and underestimation of the standard error – is provided
in Gabaix and Ibragimov (2011) and Gabaix and Ioannides (2004). Here, we use the
OLS estimator with and without the bias and standard error correction proposed by
Gabaix, with our preferred combination being the OLS estimator corrected for bias and
with corrected standard errors. 3

Gibrat’s Law Concerning investigations of Gibrat’s Law, the literature does include
examples of parametric estimations, such as linear spline estimation (see Desmet &
Rappaport, 2017) and bin-size dummy regression (see Michaels et al., 2012). How-
ever, they are less frequently used than non-parametric estimation and less immediate
in their interpretation. Therefore we favor more common non-parametric approaches,
and in particular the Nadaraya-Watson estimation. Leading papers in this literature
use the Nadaraya-Watson estimator, which provides a visually straightforward inter-
pretation of the results (see, for example, Desmet & Rappaport, 2017; Ioannides & Over-
man, 2003).

2.3 Literature

A vast literature has arisen since Zipf and Auerbach, examining not only the size of the
exponent in the power-law distribution of city size and rank but also, following Gabaix,
testing whether Gibrat’s Law holds, i.e. whether population growth is systematically
related to existing city size. It is far beyond the scope of this paper to try to summarize
the literature in its entirety. Instead, we focus on both seminal and recent contributions
to this literature, paying particular attention to tests of Zipf’s and Gibrat’s Laws. We
report in this section a brief summary of the more extensive literature review given in
Appendix A.

We distinguish between short and long-run analysis and, among short-run analy-
ses, between locations. We define the “short-run” literature to be empirical analyses
using less than 50 years of data on urban populations and review a range papers that
meet these criteria, distinguishing where possible between three sets of analyses, re-
flecting the choice of urban unit. The first using officially-defined municipalities to
delineate cities, the second using metropolitan areas, while the third using definitions
of cities built from satellite imagery. The second part of our literature review covers em-
pirical analyses of city growth and size distributions in the long-run, which we define
to be over a period of at least half a century. We review these separating into four broad
categories based on their (principal) region of analysis: global studies; the Americas;
Asia; and Europe.

3Alternatives, not covered in this analysis, are estimation with maximum likelihood methods is cov-
ered in the appendix and non-parametric approaches, which allow the Zipf exponent to vary by city size.
The latter include the local Zipf exponent (Gabaix, 1999b; Ioannides & Overman, 2003) and the Theil
estimator, as per Dittmar (2020).
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At first glance there appears to be little consistency in the literature. The cases of
India and China are emblematic: Schaffar and Dimou (2012) and Chauvin et al. (2017)
both find that Zipf’s Law does not hold in either country, but they then disagree on
whether Gibrat’s Law does. Dingel et al. (2019) are not able to reject Zipf’s Law in
either economy when they use night-lights to define cities and note that they would
have if they had used administratively defined cities. Jiang et al. (2015) make a similar
finding and raise the importance of scale: Zipf’s Law appears to be a weak descriptor
of small urban systems but more relevant for larger urban systems. This is intuitive:
it seems unreasonable to expect the urban structure of Andorra, home to fewer than
80,000 residents of whom more than half live in the metropolitan area of the largest city,
to match precisely the principal characteristics of the urban structures of the continental
US or China, vastly larger geographically and economically.

As the examples of India and China suggest, the seeming babel of empirical results
relating to Zipf’s and Gibrat’s Laws stems, at least in part, from differences in the un-
derlying unit being measured, the cutoffs employed on those units, and the empirical
methods chosen. As shown in the summary of the short-run literature in the appendix,
where larger and less arbitrary urban boundaries are used, it becomes harder to reject
Zipf’s Law in particular. This is particularly the case in the newer literature using satel-
lite imagery, such as nightlights. Reflecting the literature, as well as economic rather
than political realities, our focus is on metropolitan areas, not municipalities. For such
units, there is by and large clarity that a power-law relationship exists between rank
and size, at least when the appropriate cut-off is employed.

In terms of method for testing Zipf’s Law, as outlined above, the state-of-the-art
has progressed substantially beyond basic OLS and now includes corrections to both
the point estimate and the standard error, as well as non-parametric methods. The
latter correction involves use of the sample size itself. When combined with the use of
larger urban units, which are by definition fewer in number, one consequence is far less
certainty about the parameter estimates. This creates a tension in longer-run analyses
between wider confidence intervals, which can mean an inability to reject a parameter
estimate of 1 over time, and discerning trends in the point estimate; this is a point we
return to in our analysis. For this reason, we add to our analysis trends in the Gini
coefficient, as suggested by Henderson and Wang (2007).

The long-run literature typically focuses more on Gibrat’s Law than Zipf’s. It in-
cludes a number of analyses of US urban growth over the long-run, with some evidence
in favor of Gibrat’s Law but with numerous caveats. Analyses of other urban systems,
including Brazil, China and Japan, find support for Zipf’s Law but again Gibrat’s Law
appears to hold only in certain cases. In research that overlaps in setting somewhat
with ours, Klein and Leunig (2015) examine urban growth in England 1761-1891 and
test Gibrat’s Law. They find that it is violated consistently, although this appears to
be driven by their choice of unit and lack of any cut-off. Overall, the long-run pattern
of urban growth dynamics and the size-rank relationship in Britain, the world’s first
urbanized industrial economy, remains largely unknown and this is the focus of our
analysis.
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3 Data

3.1 Administrative Context

To understand the relationship between a city’s size and its rank and future growth,
we use detailed data on British city populations from 1801 to 2011. The underlying
data stem from the UK’s 22 decennial censuses. There are at least two key attributes of
the British setting that are worth noting. Firstly, because of its island nature, the geo-
graphical scope of the larger political unit is fixed.4 Secondly, Britain was the location
of the first Industrial Revolution and, consequently, the first economy to transition to
majority-urban. This gives Britain the longest-running panel series for an urbanized
economy.

The oldest administrative units in Britain are civil parishes, which in many in-
stances have ancient roots, dating back to feudal times. Civil and religious parishes
overlapped until the Poor Law Amendment Act (1866), which defined “civil parishes”
to be any unit that levied its own rate, for the purposes of poor relief; this definition
included not only ecclesiastical parishes but also other units, including townships. The
Local Government Act (1888) created larger administrative counties (and county bor-
oughs) as units for local government, which often resembled older traditional (or cer-
emonial) counties. Under a successor Act in 1894, administrative counties were subdi-
vided, into units known as urban and rural districts. The Local Government Act of 1972,
together with the London Government Act of 1963 and the Local Government (Scotland)
Act 1973, reformed the make-up of districts in Britain. In England, for example, it split
314 districts into metropolitan (34) and non-metropolitan (244) categories, as well as
London boroughs (32) and two other sui generis districts.

Under the Local Government Act of 1992, unitary authorities were formed in Eng-
land and Wales, with council areas formed in Scotland, after the 1994 Local Government
etc. (Scotland) Act. These are local authorities responsible for the provision of all local
government services within a (local government) district. This means that, since 1992,
a new spatial taxonomy has existed that reflects urbanization within districts: under
the 1992 Act, larger towns can have separate local authorities from the less urbanised
parts of the same districts. This Act continues to be used, with changes in six ceremo-
nial counties between 2019 and 2021. In Dorset, for example, the number of unitary
authorities was reduced from eight to two in 2019. This reduction involved the merger
of two existing (urban) unitary authorities and one non-metropolitan district into a
new authority (Bournemouth, Christchurch and Poole), while the five remaining non-
metropolitan districts were merged to form Dorset Council (UK Houses of Parliament,
2018).

The example of Dorset above highlights the challenges of using municipal bound-
aries to examine the city size-rank relationship. Adjustments to the units used to of-
ficially define cities are not incremental but occur instead in less frequent but more
substantive reforms, such as those of 1972, 1992 and (in the case of Dorset) 2019. In
order to reliably estimate the size-rank relationship, it is important to use spatial units
that are not only consistent over time but also reflect the true extent of urban agglom-
erations. In the case of the Bournemouth, Christchurch and Poole unitary authority
established in 2019, the Christchurch area had previously been a non-metropolitan dis-

4Relatively few other countries have fixed geographical boundaries over the same time period. The
United Kingdom included the full island of Ireland from 1801 to 1921 and Northern Ireland since. We
focus here, however, on Britain, which has been in the same political unit since 1707.
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trict. Its inclusion was legally defined in the relevant Statutory Instrument by reference
to five “electoral divisions”.

Electoral divisions (or wards) are the spatial units used for Britain’s administrative
geography: all higher administrative units are built up of whole electoral wards or di-
visions. They are used for parliamentary constituencies and the EU’s Nomenclature
of Territorial Units for Statistics (NUTS) regions, as well as for the unitary authori-
ties (in England and Wales; council areas in Scotland) and the metropolitan and non-
metropolitan districts mentioned above. As of the late 2010s, the UK had over 9,000
electoral divisions/wards, with an average population of roughly 5,500 in each. These
form the basis of the Vision of Britain through Time database (VOB) we use for our anal-
ysis (Southall, 2017). The VOB database brings together historical surveys of Britain,
in particular Census Reports, to make information on population by geographical unit
publicly available. The database involved conversion of named areas into areas with
consistent boundaries over time. To do this, VOB combines accurate information from
the 2001 Census with County Administrative Diagrams, published from 1900 and ex-
tended back in time using Registrar General maps.

3.2 Spatial Taxonomies

As noted in the literature review, the choice of urban unit may affect the results of tests
of Zipf’s and Gibrat’s Law. For that reason, we use three different geographical units
in our analysis, all available from the VOB database and each of which is related to
the concept of a city: “Local Government District”, “Unitary Authority” and “Primary
Urban Area”.5 Summary statistics for all three levels of unit are given in Table 2.

1. Local Government Districts (LGDs) are the most granular unit we use in our
analysis and also the unit that varies most over time with administrative changes.
Data are available on population by LGD for each British census from 1851 to
2011. The number of urban districts rises from 527 in 1851 (with a median popu-
lation of 5,109) to a peak of 1,143 in 1921 (median population: 8,595). Thereafter
the number falls, in particular after the reforms of 1972, when the number of units
falls from 895 to 461. There were 347 LGDs in Britain in 2011.

2. Unitary Authority (UAs) are, as described above, a larger spatial unit than LGDs
and were reported from 2001, the first Census after the reforms of the 1990s. Us-
ing population by electoral division across Censuses, the Vision of Britain database
has calculated the population for each UA by Census year from 1801 to 2011. This
means that, unlike LGDs, UAs are fixed spatial units across the entire period of
analysis. There are 379 or 380 UAs in most Census years.6

3. Primary Urban Areas (PUAs) are a spatial unit defined by the Centre for Cities
to reflect the “built-up” area of a city (Centre for Cities, 2021). To do this, they
aggregate UAs (for England; for Scotland and Wales, in almost all cases, the cor-
responding local authority area is used). There are 61 PUAs available for almost
every Census year from 1801 to 2011. Given their spatial consistency over time,
and given their ability to reflect the full extent of an urban agglomeration, these
are our preferred unit.

5A fourth unit type, “Travel To Work Area”, exists in the VOB database, but only for three Census years
between 1991 and 2011.

6Data for Scottish UAs are missing for 1891.
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Figure 1: Local Government District
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Note: The left panel of this figure shows the number of Local Government Districts included in the sample for each census
year for each cutoff methods. The right panel shows the size of the smallest Local Government Districts included in the
sample for each cutoff method.

3.3 Samples by Cut-off

Section 2.2 outlined four possible cutoffs that can be applied to datasets of city popu-
lations: what we term the Level, Fraction, Conservative and Deviation Cutoffs. Further,
Section 3.2 outlined three different spatial definitions of city. This gives twelve different
combinations of spatial units and cutoff methods, what we term unit-method pairs. Fig-
ures 1-3 present for each Census year for which they are available, the number of cities
included in the analysis, and the minimum city size, by cutoff, for each of the three
levels of spatial units.7 In each, the black line represents our preferred unit (PUAs).

Using LGDs (Figure 1), the sample size to be included in the analysis is quite vari-
able, both over time (given a cutoff method) and across methods. For example, of 347
LGDs in 2011, all would be included under the Conservative cutoff, 285 with a 50,000
Level cutoff, 144 under the Deviation cutoff, and 70 under the Fraction cutoff. Because
of their nature, and a combination of the trend in the total number of LGDs and rising
populations over time, the Level and Fraction cutoffs trend in different directions: the
Level cutoff implies a sample of fewer than 100 before 1921, while the Fraction cutoff is at
or above 200 for the period 1891-1961. While the minimum city size is 50,000 through-
out under the Level cutoff, it rises from 13,000 in 1851 to 209,000 in 2011 for the Fraction
cutoff. Under the Conservative cutoff, minimum city size is (roughly) between 3,000 and
4,000 until 1931 and close to 7,000 thereafter. The Deviation cutoff has a 100-fold change
in minimum city size: from 1,000 in 1851 to 117,000 in 2011.

For UAs (Figure 2), which in our dataset are constant over time with a full sample

7Tables 3-6 present the same information in tabular form in the Appendix.
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Figure 2: District/Unitary Authority

100

200

300

1801 1821 1841 1861 1881 1901 1921 1941 1961 1981 2001

Sample size

0

50

100

150

200

1801 1821 1841 1861 1881 1901 1921 1941 1961 1981 2001

Minimum city size (in thousands)

Conservative Fraction Deviation Level

Note: The left panel of this figure shows the number of District/Unitary Authority included in the sample for each census
year for each cutoff methods. The right panel shows the size of the smallest District/Unitary Authority included in the
sample for each cutoff method.

Figure 3: Primary Urban Area
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Note: The left panel of this figure shows the number of Primary Urban Area included in the sample for each census year for
each cutoff methods. The right panel shows the size of the smallest Primary Urban Area included in the sample for each
cutoff method..
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size of 380, again under the Conservative Cutoff, almost all are included from 1911 on;
earlier than this only a smaller share is included (155 in 1801). The minimum city
size is quite volatile, at 20,000 or more before 1891 (with one exception) and below
10,000 thereafter (again with one exception). The Deviation cutoff yields a sample size
of at least 200 before 1881, closer to 100 for the following Censuses, and rising again to
close to 200 by the turn of the millennium. Minimum city size increases from less than
30,000 before the 1860s to more than 100,000 from 1911 on. By construction (given the
fixed number of spatial units), the Fraction cutoff gives a consistent sample size of 76
throughout. There is an order-of-magnitude rise in the minimum city size over the first
century, from 18,000 in 1801 to 117,000 by 1911, after which the minimum size is largely
stable. Lastly, the Level cutoff yields a growing sample over time, from 45 in 1801 to 370
in 2011.

Lastly, there are the 61 PUAs (Figure 3), our preferred spatial unit. The Conservative
and Deviation cutoffs include almost all of these throughout the two centuries, while
(by construction) the Fraction cutoff only includes 13 each year. The Level cutoff trends
up over time, starting at 14 and rising to 58 (or higher) from 1911 on.

There are two features that are appealing a priori in judging the various cutoffs and
spatial units, given the time and geographical setting. Firstly, the best combination of
spatial units and cutoffs are likely to exhibit a consistent sample size over time, reflect-
ing the lack of entirely new urban agglomerations in the setting under consideration.
Secondly, the strongest unit-method pairs should show a steadily rising minimum city
size, corresponding to Britain’s growing urban population over the period.

The minimum size of included cities is typically greatest using the Fraction cutoff:
only for LGDs, the smallest units, before 1961 and for UAs (before 1831) is this not the
case – and in those instances, it is the Level cutoff that has the largest minimum city size.
Given the less arbitrary nature of the Conservative and Deviation cutoffs, this suggests
that a rule-of-thumb Fraction cutoff is likely to miss important parts of the city distri-
bution – as seen, for example, in the right-hand panel of Figure 3. Secondly, sample
sizes (and related minimum city sizes) are volatile, even for statistically more robust
cutoffs, for spatial units based on administrative boundaries. This is most obvious in
Figure 1, where the minimum city size, under the Fraction or Deviation cutoffs, increases
substantially between 1971 and 1991 – in a way completely inconsistent with Britain’s
underlying population dynamics.

Ultimately, of the twelve possible unit-method pairs, it is the Primary Urban Area
spatial unit, combined with either the Conservative or Deviation Cutoff, that reflects the
two a priori desired attributes: a largely stable number of cities to be included in the
analysis, and a minimum city size that grows gradually over time, in line with Britain’s
urban population. Indeed, for PUAs in Census years after 1981, the Conservative and
Deviation cutoffs give the same sample of sixty urban areas, representing approximately
60% of Britain’s overall population in 2011. For simplicity, given the nature of its con-
struction means that it is at least as inclusive as the Deviation cutoff, our preferred cut-
off is the Conservative one.

4 Analysis & Results

In this section, we outline the results of the three elements of our analysis. We start
by investigating the size of the Pareto exponent, in other words testing whether Zipf’s
Law holds, and examine the extent to which the conclusion varies by city definition and

13



Figure 4: Pareto exponent, Deviation and Conservative cutoff for Primary Urban Areas
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Note: This figure shows, using two of the four cutoff methods (Conservative and Deviation cutoff), the absolute value of the
Pareto coefficient, for each Census year for the preferred unit (Primary Urban Area).

sample cut-off. We complement this by presenting Lorenz curves and Gini coefficients
for urban population. We turn finally to investigating whether Gibrat’s Law holds, i.e.
whether there is any link between initial city size and future growth.

4.1 Pareto Exponent

Our first empirical objective is to examine whether Zipf’s Law holds, using the best
combination of city definition and city-size cutoff, and how that answer changes when
other unit-method pairs are used, including those pairs dominant in the existing liter-
ature on the presence of Zipf’s Law and the slope of the Pareto distribution of city size
and rank. As explained in Section 2.2, in addition to the choice of spatial unit and cut-
offs, we also examine the impact on the estimated parameter and statistical significance
of corrections for bias and the standard error.

Our strategy involves estimating, for all twelve unit-method pairs, the parameters
of the city size-rank relationship for each year for which that unit-cutoff pairing is avail-
able (up to a maximum of 19 Census years). To start, we convert the size-rank relation-
ship into logs. As per Gabaix and Ibragimov (2011), correcting for bias in the OLS es-
timator involves using the following adjusted log-log specification: log(Rank − 0.5) =
β0+β1log(Size). We report the absolute value of β, with a greater value corresponding
to a steeper downward slope, i.e. a smaller largest city and thus a less concentrated
spread of the population. Similarly, as explained in Gabaix and Ioannides (2004) and
Gabaix (2009), the standard error estimated by OLS is underestimated by a factor of
5, because the ranking procedure makes the residuals positively autocorrelated. Thus,
we compare the unadjusted standard error with one where the standard error is given

by the following: SE =
√

2
n .

In each of 19 Census years, therefore, there are up to twelve unit-cutoff pairings and
four sets of results per pairing: the standard (biased) OLS estimator and the unbiased
estimator, each with unadjusted and adjusted SEs. Of the 48 permutations for any
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given year, we present two – the unbiased estimator, with adjusted SEs, using Primary
Urban Areas, with either the Conservative or the Deviation cutoff – as the most reliable
and thus our preferred, based on the discussion in Sections 2 and 2.3, and contrast the
results from alternative permutations against this. The Pareto exponent for these two
over time is presented in Figure 4, with the appropriate 95% confidence intervals. The
preferred combination of data and methods presents three important stylized facts:

1. Firstly, Zipf’s Law cannot be rejected in any one of the 19 Census years where we
can use the preferred unit (Primary Urban Areas), either of the preferred cutoffs,
and the appropriate estimator and standard errors.

2. Secondly, for most of the period (unsurprisingly given the similar samples), the
two cutoffs produce very similar results.

3. Lastly, while the estimates are sufficiently imprecise to not rule out an exponent
of one each Census year, any trend is upward over time, certainly after 1861:
i.e if there is a trend in Britain’s city distribution, it is towards a less unequal
distribution over the two centuries covered. At its lowest, the exponent is close to
0.75 while its most recent value is closer to 1.25. For an urban system with a fifth-
largest city of one million (roughly the population of the Glasgow metropolitan
area in the 2010s), the fall in the exponent implies a significantly smaller largest
city: from 15.6m to 5.2m.

We now explore how these findings are affected firstly by changes in city definition,
secondly by changes in sample cut-offs, and finally by the omission of correcting for
bias in the coefficient or its standard error. Figures 5 and 6 compare, on panels with
standardized axes, the estimated rank-size coefficient across all three definitions of city,
for each of the four cutoffs described earlier. In all panels, the coefficients include a
correction for bias in the point estimate. For ease of exposition, confidence intervals are
not shown but the full set of results is shown graphically in the Appendix, in Figures
14 to 17.

The top two panels of Figure 5 show our preferred cutoffs for city size and the
black lines in each are the preferred spatial unit (Primary Urban Areas). As confirmed
in 6, there are striking differences between the estimated Pareto exponent for this unit
compared to Unitary Authorities and Local Government Districts, the type of admin-
istrative units subject to periodic but wholesale revision. Similarly, the use of more
ad-hoc cutoffs (such as the top fraction of urban units or a population cutoff) produces
very different estimates, in particular for administrative urban units.

Three stylised facts emerge from this comparison. Firstly, across all cutoffs and in
almost all periods, these smaller administrative units generate a larger Pareto coeffi-
cient. In 2001, using the Fraction cutoff, the estimated Pareto coefficient in the LGD
and UA datasets is roughly three times that from Primary Urban Areas. While a more
extreme example, there are similar results from, for example, the Deviation and Level
cutoffs for the most recent Census years.

Secondly, using administrative units rather than urban extent, the pattern in the
coefficient over time is less consistent within cutoffs. Figure 5 shows, in line with ex-
pectations given cities’ largely slow-moving populations, a general trend towards a
higher coefficient and less concentrated spread of population across cities when Pri-
mary Urban Areas are used. Using Unitary Authorities, however, the trend is negative
(at least until the mid-20th century) using the Level cutoff and more erratic using the
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Figure 5: Pareto exponent across spatial units, by cutoff
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Note: This figure shows, for three definitions of cities, the absolute value of the Pareto coefficient, for each Census year for
each cutoff method.

Figure 6: Pareto exponent across cutoff, by spatial units
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Note: The four panels in this figure show the comparison of the absolute value of the Pareto coefficient between all cutoff
methods, for each Census year and for each unit.
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Figure 7: Pareto exponent, with and without correction for bias and standard errors
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Note: This figure shows, using the preferred unit-method pair (PUAs and Conservative cutoff), the absolute value of the
Pareto coefficient, for each Census year. The left-hand panel shows the results using the appropriate standard errors, while
the right-hand panel shows naive standard errors. In both panels, two series are presented: with and without correcting for
the bias in estimating the coefficient.

Conservative cutoff. Using LGDs, the trends across the different cutoffs are significantly
more erratic, for example, the nearly three-fold increase in the coefficient 1971-2001,
using the Fraction cutoff.

A related third stylised fact relates to consistency across cutoffs. As mentioned in
the paragraph above, where administrative units such as LGDs and UAs are used, the
choice of cutoff leads to very different conclusions about the extent of concentration
in urban population and its change over time. Focusing just on Local Government
Districts in 2011, the Conservative cutoff would imply a Pareto coefficient of almost
exactly one, the Level cutoff almost 1.5, the Deviation cutoff 2.25 and the Fraction cutoff
roughly 3.25.

The final element of our analysis of the Pareto exponent concerns estimation meth-
ods. Figure 7 presents for each Census year the estimated coefficient, for the preferred
unit-cutoff pairing – Primary Urban Areas and the Conservative Cutoff – with and
without bias correction and, in both cases, using adjusted and naive standard errors.
The left-hand panel shows the results using the appropriate standard errors, while the
right-hand panel shows naive standard errors. In both panels, series with and without
correcting for the bias in estimating the exponent are shown.

Two main stylised facts emerge from this. Firstly, the estimated coefficients, when
no correction for bias is applied, are larger in absolute value than with the correction
applied. This is in line with its construction but it is important to bear in mind, relative
to other findings presented in the existing literature: papers without any adjustment
for bias in the estimator will understate the extent of urban concentration. Secondly,
while naive standard errors imply very precise estimates of the Pareto exponent, the
use of appropriate standard errors indicates far greater uncertainty about its value.
Again, this follows directly from the construction of the appropriate standard errors
but is relevant when considering, for example, the rejection of Zipf’s Law (where the
exponent equals one).

17



Figure 8: Gini coefficient across spatial units, Conservative cutoff
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Note: This figure shows the evolution of the Gini coefficient for our preferred cutoff, i.e. the Conservative cutoff, for each
unit.

4.2 Gini Coefficient

We turn next to the Gini coefficient of urban population distribution, a measure used
by Henderson and Wang (2007) in their analysis of global urban populations. As in
its more familiar setting of income distribution, the Gini coefficient ranges between 0
and 1, with 0 representing perfect equality (i.e. all cities have the same population)
and 1 representing perfect inequality (i.e. the entire urban population is in one city).
As with the Zipf and Gibrat analysis, we compute the Gini coefficient, and associated
Lorenz curve, for each of the twelve unit-cutoff pairings, for each Census year for which
its available. We present here only the key findings, leaving other analyses for the
appendix, in particular Figures 18 and 19 and Tables 7 and 8 for the Gini coefficient
and, for Lorenz curves, Figures 20 to 26.

An overview across units, using the Conservative cutoff is given in Figure 8, while
an overview across cutoffs, using PUAs is shown in Figure 9. Our analysis presents
four stylized facts:

1. Using the preferred combination of unit and cutoff reveals a steady rise and then
decline in urban concentration in Britain over time. The Gini coefficient for PUAs
rises from 0.63 to 0.69 between 1801 and 1861, a rise of roughly one tenth. The
trend then reverses, with that increase undone by 1911, before a pause or sig-
nificantly reduced fall in concentration between 1911 and 1951. After 1951, the
urban population continues to spread, with the Gini coefficient reaching 0.56 in
1991, meaning concentration had fallen by one fifth since 1911. There was lit-
tle change in concentration between 1991 and 2011. These results point to very
different trends in urban concentration in Britain than in those documented by
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Figure 9: Gini coefficient by cutoffs, Primary Urban Areas
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Note: This figure shows the evolution of the Gini coefficient for our unit, i.e. Primary Urban Area, for each cutoff.

Probst (2017) for Sweden.

2. Figure 8 reveals the importance of choice of urban unit is clear: concentration
using Primary Urban Areas is nearly twice that observed in Unitary Authorities.
Concentration among Local Government Districts is a similar level and trend to
PUAs – but is significantly more volatile and jumps downwards sharply after
1971, reflecting municipality reform.

3. Similarly, Figure 9 underscore the effect of choice of cutoff. Using a set fraction
of the PUAs would suggest little meaningful change in urban concentration over
time. A set population threshold, typically the most common choice of cut-off in
the literature, would present an exaggerated increase in concentration during the
19th century, and with different timing (peaking in 1891).

4. The patterns of urban concentration observed through the Gini coefficient are
consistent with those seen in the Zipf’s Law analysis: a rise in the Pareto exponent
(in absolute value) denotes a fall in urban concentration, similar to a decline in the
Gini coefficient. The trends in the Gini coefficient and Pareto exponent point to
the same evolution of urban concentration in Britain: rising concentration 1801-
1861 and falling thereafter, especially 1861-1911 and 1951-1991.

4.3 Gibrat’s Law

We turn, finally, to examining whether Gibrat’s Law is observed in the data. Gibrat’s
Law holds that cities follow a growth process that is independent of their size. As
per Section 2, Gabaix (1999b) proves mathematically that Gibrat’s Law implies Zipf’s
Law and Córdoba (2008) proves that Zipf’s Law implies Gibrat’s, but as discussed in
Section 2.3, while the validity of this law has been extensively examined, there are no
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Figure 10: Lorenz curves for PUAs, by selected years
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clear conclusions. The most common approaches in the literature is a non-parametric
kernel regression or Nadaraya-Waston estimation. A less well-known method, used
by Desmet and Rappaport (2017), is a parametric piece-wise linear spline. We employ
both methods here, referring the reader to Desmet and Fafchamps (2006) for more on
the detail of these methods. We test Gibrat’s Law on three city definitions – LGDs,
UAs and PUAs – and for all four cutoffs, but focus our results here on the preferred
combination of unit and cutoff: Primary Urban Areas with the Conservative cutoff.8

Results for other combinations are shown in online Appendix B.

Kernel regression The Kernel regression, or Nadaraya-Watson estimator, gives a con-
tinuous nonlinear approximation of growth relative to initial population. Where Li,t
refers to the log of population for location i in year t, and with decennial data:

(Li,t+10 − Li,t)/10 = φtLi,t + eit

An overview of the results of the Kernel regression, in particular the value of the
Nadaraya-Watson estimator, is given in Figure 11, for the preferred combination of
city-unit and cutoff. For the period as a whole, the coefficient is statistically significant
from zero, at odds with Gibrat’s Law. In particular, taking start (1801) and end (2011)
populations, cities with a population of 20,000 or less (roughly, below log-value 10)
grew faster than cities with a larger population in 1801.

The lower four panels in Figure 11 show that this is driven, largely, by the later 19th
century. For 1801-1861, there is no link between initial size and subsequent growth; ar-
guably the same is true for 1911-1951. However, especially for 1861-1911 – and also for
1951-2011 – there appears to be an inverse link between initial city size and subsequent
growth: the smallest cities grew faster on average. This echoes Glaeser et al. (2014),
who find that, before 1860 and after 1970, less populous counties grew faster in eastern

8We do not test Gibrat’s Law on Travel To Work Area because of the rationale behind their construction:
boundaries are redefined in each of the three census years for which data area available, while guidelines
for their construction differ.
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and central USA, although the timing is slightly different. The contrast between the
1861-1911 panel and the other three periods, in the scale of the coefficient, suggests a
unique set of factors at work then, mostly likely rail infrastructure.

Linear spline The piece-wise linear spline involves mapping (log) population into its
vector form, such that the coefficient on each spline segment measures the marginal
effect of an increase in population size on growth. If growth is orthogonal, as per
Gibrat’s Law, the coefficients of each of the spline segments should be close to zero. It
is computed according to the following equation, where the 1-by-k vector Li,t includes
a constant and a spline of population with k − 1 segments:

(Li,t+10 − Li,t)/10 = ~β · ~Li,t + eit

An estimation of the piece-wise linear spline for every unit-cutoff-period combina-
tion results in more than 200 regressions, with 819 coefficients. Overall, for 83% (678)
of the coefficients, it is not possible to rule out the null hypothesis of no link between
initial size and growth, suggesting some support for Gibrat’s Law. Rather than report
all these coefficients, we instead present a table summarizing the key results for our
preferred unit-cutoff pair (see tables 9 to 11).

Tables 9 to 11 summarize the results, for our preferred unit-cutoff pairing. For the
nineteenth century, the only significant coefficients are on the smallest size bin for the
period 1851-1881. Thereafter, there are a greater number of significant coefficients but
the pattern is less clear: smaller cities grow more slowly 1931-1961 and again 1981-
2001, while mid-tier cities (with populations of between 0.2m and 1.2m) grow more
slowly 1971-2001. Combined, these imply faster growth of the largest cities 1981-2001.
These provide more detail in relation to patterns of urban growth, especially in the later
20th century, but are largely consistent with the narrative emerging from the analysis
presented earlier in this section.

Taking stock of our analysis of the relationship between initial city size and subse-
quent growth, we highlight two aspects. Firstly, as with tests of Zipf’s Law, conclusions
regarding Gibrat’s Law depend pivotally on the choice of urban unit. In particular, use
of Unitary Authorities, rather than Primary Urban Areas, would strongly imply a neg-
ative relationship between initial city size and subsequent growth (see Figure 27 – for
the whole period 1801-2011 and for three of the four major sub-periods (1861-1911,
1911-1951 and 1951-2011). Similarly, using LGDs (and the same Conservative cutoff)
would lead to a rejection of Gibrat’s Law for the period 1961-1981, and in the same
direction: smaller LGDs grew faster. Similarly, we contrast our findings with those of
Klein and Leunig (2015), who reject Gibrat’s Law in every setting, looking at England
and Wales during the 19th century; this rejection is driven by parishes with very small
populations (under 2,000), well below the threshold for cities suggested by the data.

Secondly, we highlight the consistency in the pattern of results between this analy-
sis and those presented earlier. As with the Zipf and Gini analysis, our Gibrat analysis
points to the mid-19th century acting as a turning point in the evolution of Britain’s ur-
ban system. Before this, smaller cities grew no faster than larger cities, but afterwards
– especially 1861-1911 – there is strong evidence of compression in the urban structure.
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Figure 11: Kernel regression: Primary Urban Area with Conservative cutoff
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Note: Kernel regression: growth rate for the whole period 1801 to 2011 plotted against initial city size in 1801, and inter-
mediate periods 1801-1861, 1861-1911, 1911-1951 and 1951-2011 plotted against initial size.
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5 Conclusion

In this paper, we have examined concentration in Britain’s urban system over more
than two centuries. In particular, we analysed the relationship between the city size-
rank relationship (Zipf’s Law) and the link between a city size and its subsequent
growth (Gibrat’s Law), as well the Gini coefficient as a summary measure of urban
concentration. Our work builds on a theoretical literature that has established that
naive OLS estimation will produce both a biased estimator and artificially precise stan-
dard errors. We also place our work within an extensive empirical literature that ex-
amines the city size-rank and size-growth relationships. Using detailed Census data
for Britain from 1801, we show how the estimated relationship between a city’s rank
and size varies dramatically across city definitions and sample cutoffs and that rejec-
tion of Zipf’s Law depends not only on this choice but also on methods employed. We
outline 64 possible combinations but choose Primary Urban Areas, and a Conserva-
tive sample cutoff, as our preferred sample, as well as using unbiased estimators and
adjusted standard errors. The resulting sample is consistent with a priori expectations,
given the setting: a largely stable sample size, reflecting the lack of new cities emerging
during this period, and a steadily rising minimum city size, reflecting growing urban
populations.

Figure 12: Gini coefficient and Zipf coefficient for Primary Urban Area with Conserva-
tive cutoff
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Note: Gini coefficient and Pareto exponent for Primary Urban Area with Conservative cutoff. Pareto exponent is shown in
regular, not absolute, values for consistency across the two panels.

Under our preferred results, reflecting the strongest combination of city definition,
sample cutoff, estimator and standard errors, we are unable to reject Zipf’s Law, i.e.
that the Pareto exponent is one, in any of the 19 Census years available. This reflects
the limits to precision as much as the point estimates themselves: the true sample of
cities in Britain over the last two centuries is approximately 60. One implication is that
in small urban systems, even less precision will be available to researchers. The large
standard errors relate, given their formula for construction, to underlying sample size.
This suggests that, if the focus is precision of the estimate of the exponent, studies of
the distribution should focus on larger economic units. Regardless, it is unclear that
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we would expect Zipf’s Law to hold in economies with very small populations, such
as Andorra (2020 population: 77,000) or Iceland (364,000), even if we expect it to hold in
larger geographical units, such as Germany (83 million) or Europe as a whole (750m).
This raises broader questions about the relevant underlying economic structures: for
example, with Britain part of the European Union 1973-2020, is that union the relevant
unit within which to understand the distribution of British city sizes in those decades?
Similarly, London’s very large size in the 19th century may stem from strong links to
other parts of the British Empire.

This suggests that it may be helpful for researchers to move the debate on from
specifically rejecting (or not) Zipf’s Law (whether β = 1 exactly) and instead under-
standing patterns of urban concentration (whether β is rising or falling over time). We
summarize patterns of urban concentration – across both the Pareto exponent and the
Gini coefficient – in Figure 12. Both series show the same pattern over time: a trend to-
wards more concentration in bigger cities between 1801 and 1861 and then the opposite
trend thereafter, especially during 1861-1911 and 1951-1991. Both Zipf and Gini anal-
yses suggest a pause in this fall in urban concentration between 1991-2011, the timing
of which coincides with the concept of the consumer city, i.e. one based on centripetal
forces relating to consumption, rather than production or employment (Glaeser et al.,
2001).

The overall change in Pareto exponent is substantial and, where these results have
wider relevance, it has significant implications where policymakers wish to understand
the likely patterns of urban concentration over coming decades. For example, in the
British urban system, the fifth largest city in the earliest 21st century (Glasgow) has a
population of close to one million. Where the Pareto exponent is 0.8 (its peak in the
mid-19th century), this implies the largest city would have a population of over 15
million. Where the exponent is 1.25, similar to the value seen in 2011, the population
of the largest city is less than six million. While the drivers of these changes in urban
concentration – including transport technology and policies relating to housing and
industrial strategy – are beyond the scope of this paper, the implications are substantial
as policymakers seek to accommodate population growth and movements in the 21st
century.

In addition, our findings have significant implications for researchers looking to
understand the patterns and dynamics of city growth. Across the literature, the modal
city definition is legal or administrative, rather than functional, and the principal cutoff
used is a fixed population cutoff. If this were used in the case of Britain, it would give,
as per Figure 6, an exponent of close to 2 in the early, implying a largest city of just 3
million where the fifth largest is one million.

More generally, across all cutoffs and in almost all periods, the use of smaller ad-
ministrative units typically generates an artificially large Pareto coefficient, something
compounded by the use of arbitrary sample cutoffs, such as a fixed population thresh-
old. In some of the existing empirical literature, this effect may be offset, in part, by use
of a naive OLS estimator, which suffers from an attenuation bias. In the case of Britain,
the effect is close to 0.1 throughout the two centuries of data. Thus, much of the existing
literature may accidentally benefit from two countervailing errors: the lack of adjusting
for bias and the use of administrative units, rather than functional cities. In addition,
due to the nature of revisions to administrative boundaries over time, these smaller
administrative units imply an unrealistic degree of change in urban concentration over
time. These issues are not present with the most appropriate unit-method pairs and
highlight the need for researchers to understand the spatial units they are analyzing.
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Similar to Berry and Okulicz-Kozaryn (2012), we conclude that much of conflict in the
literature so far is a consequence of choice of units of observation.

In summary, a growing urban population globally means an understanding of city
size and growth patterns is of increasing importance. The experience of Britain over
two centuries, the first economy in the world to urbanize, is one of initially rising but
then falling urban concentration. In addition, the analysis presented here underscores
the importance of meticulous use of data and methods in understanding urban dynam-
ics.
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Giesen, K., & Südekum, J. (2011). Zipf’s law for cities in the regions and the country.

Journal of Economic Geography, 11(4), 667–686.
Giesen, K., Zimmermann, A., & Suedekum, J. (2010). The size distribution across all

cities–double pareto lognormal strikes. Journal of Urban Economics, 68(2), 129–
137.

Gisbert, F. J. G., & Mas, M. (2010). La distribución empırica del tamaño de las ciudades
en españa, 1900-2001.¿ quién verifica la ley de zipf? Revista de Economıa Aplicada,
18(54), 133–159.

Glaeser, E. L., Kolko, J., & Saiz, A. (2001). Consumer city. Journal of economic geography,
1(1), 27–50.

Glaeser, E. L., Ponzetto, G. A., & Tobio, K. (2014). Cities, skills and regional change.
Regional Studies, 48(1), 7–43.
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Appendices

A Literature

In this section, we outline the findings of the literature review summarized briefly in
Section 2.3 above. In total, we review almost fifty published empirical analyses and
to aid exposition, we structure our review in two parts – focusing first on shorter-run
studies (either cross-sectional or less than a half-century), which typically test Zipf’s
Law, before turning to longer-run studies, which are more likely to focus on Gibrat’s
Law. In the former, we pay particular attention to the definition of city used, as this has
implications for the pattern of findings, and in the latter, we group papers by region.
Ahead of our review, we highlight that papers published prior to Gabaix and Ioan-
nides (2004) will use naive standard errors, while papers published prior to Gabaix
and Ibragimov (2011) will not correct for the bias in the OLS estimator, although some
will use the Hill estimator.

A.1 Short-run analyses

We define the “short-run” literature to be empirical analyses using less than 50 years of
data on urban populations and review a range papers that meet these criteria, distin-
guishing where possible between three sets of analyses, reflecting the choice of urban
unit. The first uses officially-defined municipalities to delineate cities, the second uses
metropolitan areas, while the third uses definitions of cities built from satellite imagery.
We start with two seminal papers on the topic and a 2005 meta-analysis.

Two seminal cross-countries studies are Rosen and Resnick (1980) and Soo (2005).
Both assemble datasets that cover a larger number of countries (44 and 73 respectively),
using data from the late 20th century. In both cases, they find that, while estimates
vary substantially by country and definition of city, Zipf’s Law is far less likely to be
rejected when urban agglomerations are used instead of administrative units. Rosen
and Resnick (1980) do not employ any bias or error correction; Soo (2005) corrects for
bias but not for standard errors, which may affect his results more generally.

The literature to 2002 is reviewed comprehensively in a meta-analysis by Nitsch
(2005). They review 515 estimates of the Zipf coefficient from 29 different studies pub-
lished between 1925 and 2002. Overall, they find that the Zipf coefficient turns out to
be significantly larger than 1 (around 1.1), on average, implying that cities are more
evenly distributed than Zipf’s Law would predict. Estimates closer to 1 are mostly
found in studies for the period post-1900 (average is 1.03 for the period after 1901 -
1950) and for metropolitan areas rather than municipalities. In particular, in the US,
one of the largest urban systems, Zipf’s Law holds for metropolitan areas. These three
papers together already highlight the importance of city definition: where metro areas,
not municipalities, are used, it is hard to reject Zipf’s Law.

Nonetheless, additions to the literature continue to use municipalities as unit of
analysis. This includes Giesen et al. (2010) and Giesen and Südekum (2011). In the
former, the authors examine a sample of eight countries and find evidence that the
double Pareto lognormal distribution provides a better fit than the simple lognormal
and Pareto distributions, at odds with Zipf’s Law. However, in the latter, the authors
use administratively-defined cities within German regions 1975-1997. Applying a cut-
off of 100,000 and a corrected OLS estimation, they find that Zipf’s law holds within
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regions. Two other papers using municipalities reject Zipf’s Law. One is Schaffar and
Dimou (2012), who study the evolution of Chinese and Indian cities above 100,000 dur-
ing the period 1981-2004. While they find the city size-rank distribution is Pareto, and
cannot reject Gibrat’s Law, they conclude that Zipf’s Law is systematically violated for
both countries, with the exponent greater than one (and varying over time). Using Ira-
nian data 2006-2016 and cutoffs of between 20,000 and 100,000, Asadi (2019) finds a
coefficient higher than predicted by Zipf’s Law in the truncated sample.

Eeckhout (2004) employs a cross-section of over 25,000 “places” in the US, officially
designated so either by state law or by the federal Census in 2000. He uses an OLS
estimator on different cutoff levels, from 42 to 155,000, and shows that the Pareto expo-
nent is very sensitive to the choice of the cutoff level. He then shows that a log-normal
distribution, rather than a power law, best fits. In a responding paper, Levy (2009)
establishes that, for the largest 150 cities – home to almost one quarter of the US pop-
ulation – the relationship is unequivocally described by a power law. This is relevant
where the objects of interest are the largest urban units. We take the key findings from
both papers – the importance of cut-offs and the power-law distribution of larger urban
units – to our analysis.

Five papers in our review use cities as defined by functional metropolitan areas,
rather than administrative municipalities. Using 1970s-1990s data for the USA and
France, Duranton (2007) links city size distribution with industrial turnover and finds
that second-nature industries prevent small cities from disappearing. His model sug-
gests that the steady-state Zipf’s curve is concave, with coefficient below 1 in lower tail
and above 1 in upper tail. Bettencourt et al. (2008) analyze labor markets in China, US
and Europe and find that the processes relating urbanization to economic development
and knowledge creation are common to all big cities belonging to the same urban sys-
tem. They observe that wealth creation and innovation are associated with an exponent
greater than one, while infrastructure is associated with an exponent below one.

Chauvin et al. (2017) compare the US, Brazil, India and China 2000-2010. They find
that both Gibrat’s Law and Zipf’s Law hold in Brazil and the USA, but not in China
and India, a finding that is suggestive of spatial equilibrium emerging with economic
development. Decker et al. (2007) examine global data on cities, using a combination
of metropolitan areas and cities defined as night-light clusters, a method discussed
further below. They conclude, in line with Eeckhout (2004), that the full distribution of
cities is best fit by a log-normal distribution, while the Pareto distribution only emerges
in the upper tail. Similarly, Bajracharya and Sultana (2020) combine both official data
on metro areas with cities defined by disaggregated spatial data, in their case the street
network. Using the case of Bangladesh 1991-2019, and applying the corrected OLS
method, they find that Zipf’s Law does not hold: instead, it is smaller when all munic-
ipalities are considered and concave at the upper end of the distribution.

We turn, lastly, to the newer literature using cities defined by satellite imagery. An
early contribution is by Fragkias and Seto (2009), who use contiguous urban built-up
areas in three parts of South China’s Pearl River Delta, 1988-1999. They find that urban
clusters in metropolitan areas do follow a power law distribution but its parameters os-
cillate overtime. However, their definition of city is likely very small, as their analyses
includes over 5,000 built-up areas across three regions with a population of 21 million.

Rozenfeld et al. (2011) define cities as “maximally connected cluster of populated
sites defined at high resolution”. They use this new measure on US and British popu-
lations, for 2001 and 1981 respectively, and find that the size-rank relationship is well
described by Zipf’s Law. Small et al. (2011) employ a similar approach at a global scale;
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specifically, they use spatially contiguous patches of stable night light over a range
of brightnesses corresponding to different intensities of anthropogenic development.
Using both OLS and MLE and different brightness cutoff levels, they find Power law
exponents in the range 0.95 to 1.11, with the estimated slope varying by brightness cut-
off. Overall, they also conclude that Zipf’s Law holds for a wide range of developed
land areas at both continental and global scales.

In related research, Small and Elvidge (2013) examine night-light patterns in China
and India 1992-2005. They find that the size distributions of “lighted cities” are consis-
tent with power laws with exponents near -1. The larger lighted segments are closer to
spatial networks of contiguous development than individual cities. This finding is con-
sistent with two subsequent analyses using similar data. Using “natural cities” globally
extracted from satellite imagery for 1992, 2001 and 2010, Jiang et al. (2015) test for the
presence of Zipf’s Law. Using an OLS estimator, they are largely unable to reject Zipf’s
Law, especially at continental and global levels. Exceptions include Africa, in certain
periods, and at country level, where Zipf’s Law is violated in certain countries and
periods. Dingel et al. (2019) construct lights-based metropolitan areas for US, Brazil,
China and India and, similarly, are unable to reject Zipf’s Law – but would if they had
used administratively defined cities. In the case of US and Brazil, their distribution
mirrors the distribution of commuting-based definitions of cities.

A.2 Long-run analyses

The second part of our literature review cover empirical analyses of city growth and
size distributions in the long-run, which we define to be over a period of at least four
decades. We review these below, separating into four broad categories based on their
(principal) region of analysis: global studies; the Americas; Asia; and Europe.

Global Henderson and Wang (2007) assemble data on 1,644 cities (usually metropoli-
tan areas, although especially earlier these definitions can vary) in 142 countries over
the period 1960-2000. They employ a cutoff of 100,000, which they say reflects na-
tional definitions, and eschew the estimation of a Zipf component, preferring instead
to analyse the “spatial Gini” coefficients of population inequality at national level. They
highlight the importance of institutional variables, with planned economies associated
with a smaller Gini coefficient, as are federal and democratic political systems. They
also document the importance of “new” cities (i.e. those that grow above the cut-off
of 100,000) in driving urban population growth. Related, they find no evidence of con-
centration into so-called mega-cities in the period under analysis.

Soo (2014) examines the Zipf coefficient in three of the world’s most populous coun-
tries – Brazil, China and India – between 1950 and 2000. He uses population by sub-
national unit (such as region or province) rather than city (however defined), but does
employ the GI corrections for estimator and standard error. None of the three countries
has more than 30 sub-national units, meaning that standard errors on the Zipf coeffi-
cient are large. As a result, he is unsurprisingly unable to reject Zipf’s Law in any year
for either Brazil or China – in India, Zipf’s Law is rejected where at least 20 sub-national
units (of 27) are included, with the coefficient being closer to zero.

The Americas Ten papers in our review examine long-run city growth dynamics in
the USA, including Rose (2006), who combines both global and USA perspectives.
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Specifically, he compares the rank-size relationship between cities (MSAs) within the
USA and between the 50 largest countries, over the period 1900-2004 and to 2050 using
population projections. Using adjusted standard errors but unadjusted OLS estima-
tors, he finds that Zipf’s Law holds both within the USA and across countries - with
the coefficient for the 50 largest countries rising from -0.78 to -0.99 between 1900 and
2050.

Five papers focus on US city growth during the 20th century, typically 1900-1990
and using Metropolitan Statistical Areas (MSAs). Dobkins, Ioannides, et al. (2000) re-
ject the null hypothesis of parallel growth of cities and find evidence that the Pareto
exponent has been decreasing (in absolute value) over time, implying increased con-
centration towards the upper end of the distribution; Dobkins and Ioannides (2001) add
to this that in cities with neighbours, growth rates are closely interdependent. How-
ever, using a non-parametric approach, Ioannides and Overman (2003) find evidence
in favor of both Zipf’s Law and Gibrat’s law: for MSAs, it is not possible to reject the
hypotheses that the first two moments of MSA growth, as well as the Pareto exponent,
are invariant to city size. Similarly, Black and Henderson (2003) document a stable size
distribution and transition process, with bigger cities exhibiting minimal downward
mobility. Using a later end date (2010), a higher cutoff (500,000 rather than 50,000), and
BEA “Economic Areas”, Berry and Okulicz-Kozaryn (2012) find that, when urban re-
gions are properly defined, US urban growth obeys both Gibrat’s and Zipf’s Law. They
conclude that conflict in the literature is a consequence of choice of units of observation.

Four papers analyze city growth in the US over longer horizons, in most instances
using Census data that start in 1790. Batty (2006) examines the population of the 100
largest US cities since 1790, together with data for the UK (1901-2001) and globally,
using the Chandler dataset from 430BC. By documenting evidence of deviations from
growth by proportionate effect, he concludes that rank–size scaling is far from uni-
versal, with “micro-level” dynamics of cities rising and falling over time an important
aspect to consider. This is consistent with Glaeser et al. (2014), who explore the dynam-
ics of county growth in eastern and central USA over the period 1860-2000, with some
data extending back to 1790. While they find evidence in favour of Gibrat’s Law for
the sample as a whole, this does not hold for long sub-periods. Before 1860 and after
1970, less populous counties grew more quickly, while between, population growth
was regularly faster in more populated areas. While one interpretation is that Gibrat’s
law is universal only over sufficiently long time periods, another is that Gibrat’s law
is an artefact of the accidental balancing of centripetal forces, which dominated during
the industrial era, and centrifugal forces before and after.

González-Val and Lanaspa (2016) analyze the populations of 190 incorporated places
in the USA, 1790-2000, their sample reflecting a population cut-off of 100,000 in the year
2000. They find mixed evidence regarding long-run city growth. On the one hand, the
unit root hypothesis underpinning random growth cannot be rejected in most specifi-
cations: growth does not depend on initial size. However, there is strong evidence in
favour of conditional convergence in growth rates within “clubs”, suggestive of “local”
mean-reversion within size bins. Lastly, Michaels et al. (2012) investigate the nature of
population growth and extend their analysis of the USA, from 1800 to 2000, to include
rural areas; they compare this with Brazil 1970-2000. They establish six stylized facts
about the dynamics of population and employment, when rural areas are added to the
picture, one of which is that Gibrat’s Law fails when rural areas are included: agricul-
tural employment growth appears to be decreasing in the initial population density,
while in urban settings, employment growth is uncorrelated to initial conditions.
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Matlaba et al. (2013) also study Brazil, using a dataset of 185 functionally defined
urban areas 1907-2008 and the GI method of estimation. Their principal finding is that
the power parameter of the size distribution of the 100 largest urban areas grows over
time, approaching unity: Zipf’s and Gibrat’s Laws became steadily more appropriate
descriptions of Brazil’s city size distribution during the 20th century. Valbuena and
Roca (2014) examine Columbian municipalities that are home to 50% of the country’s
population, 1835-2005. Using the adjusted rank–size relationship and non-parametric
techniques, they are unable to reject both Zipf’s law and, from the mid-20th century,
Gibrat’s law. Their results are consistent with changes in the drivers of Columbia’s
population growth at both national and regional levels from the 1950s.

Asia In addition to Soo (2014) mentioned above, other researchers have examined
the city size-rank relationship in China and India over the long run. Anderson and
Ge (2005) analyze China during the period 1949-1999, employing maximum likelihood
estimation (MLE) on municipalities and prefecture-level cities with a population of
greater than 100,000. They find evidence of a stable city size distribution before the
reforms of 1980 but of convergence in growth thereafter. They also suggest that the
best-fitting distribution in China is log-normal. Using data on the area of population of
walled cities during Ming and Qing era China (1368-1911), Ioannides and Zhang (2017)
find the size-rank relationship is well described by Zipf’s Law.

Two papers examine the case of Japan over the very long run. Eaton and Eckstein
(1997) examine both Japan (925-1985) and France (1876-1990), in the case of Japan focus-
ing on urban areas above 250,000. They find that the relative populations of the top 40
urban areas of France and Japan remained constant during periods of industrialization
and urbanization and are described quite well by Zipf’s Law. This is at odds with Davis
and Weinstein (2002), who analyze Japan during the period 600BC-1998AD. They find
that long-run city size is very robust even to large temporary shocks, such as the Allied
bombing on Japan during WWII, something inconsistent with random growth rates
for cities (Gibrat’s Law). They suggest instead that the evolution of Japanese cities over
the long run is consistent instead with a hybrid theory of locational fundamentals and
increasing returns.

Sharma (2003) examines Census-defined cities in India over the period 1901-1991
and finds that urban population is non-stationary. While the population of cities may
be parallel in the long-run, reflecting common long-run growth rates, in the short-run
deviations occur, typically reflecting exogenous shocks that take less than a decade to
dissipate. Arshad et al., 2019 examine the case of Pakistan, across five Census years
1951-1998, using administrative boundaries, including metropolitan and municipal
corporations, and OLS methods. They observe that Zipf’s law does not hold in any
of the five census years at national level but that it is more likely to hold for the city-
size distribution at province-level, of which there are four. Soo, 2007 examines the case
of Malaysia across five Censuses between 1957 and 2000, using urban areas of at least
10,000 people and the OLS and Hill estimators. For the full sample, Zipf’s law is re-
jected for all periods except 1957, in favor of a more unequal distribution, while in the
upper tail, the results better fit Zipf’s Law.

Europe European city growth dynamics have also been the subject of a substantial
literature, including Eaton and Eckstein (1997) mentioned above, who found evidence
in favour of Zipf’s Law in France and Japan. Using the Bairoch et al. (1988) dataset
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of European cities with a population of more than 5,000 over the course of the second
millennium, Dittmar (2020) establishes the emergence of a power-law distribution of
city size and rank, first in Western Europe (by 1500) and later in Eastern Europe. This
is consistent with technological improvements relaxing the land constraint.

Lanaspa et al. (2003) examine the evolution of Spanish urban structure during the
twentieth century. They find divergent growth before 1970 and convergent growth
1970-1999, with significant intra-distribution movements. Their OLS analysis includes
the top 100-700 cities, legally defined, in Spain. Le Gallo and Chasco, 2008 undertake an
analysis of Spanish towns for the period 1900-2001, with cut-offs of 10,000 and 50,000.
They find two main phases, one of divergence (1900–1980) and latterly convergence
(1980–2001), and also evidence of the influence of the geographical environment on
urban population dynamics. Gisbert and Mas (2010) also employ OLS analysis, in their
case on Spain’s municipal populations 1900-2001. They find that rejection of Zipf’s law
depends on the concept of cities used.

González-Val et al. (2014) compare Italy, Spain and the USA over the course of the
20th century, using municipality-level data for both Italy and Spain (and incorporated
places in the USA). They use the Nadaraya-Watson method and employ a population
cutoff of 200. They observe divergent city growth; however, they also find that data are
well fitted by a log-normal distribution and that Gibrat’s law holds, at least for certain
samples. Lastly, in the case of Spain, González-Val and Silvestre (2020) present annual
estimates of population for provinces and provincial capital cities in Spain, 1900–2011.
Unlike when data from decennial censuses are used, an analysis of their annual series
cannot reject Zipf’s Law after the 1940s.

Research has also been undertaken on the long-run dynamics of city growth in Bel-
gium, Germany and Sweden, with results largely at odds with Gibrat’s Law. Ronsse
and Standaert (2017) estimate the population of Belgian municipalities at annual fre-
quency for three sub-periods within the overall period 1880-1970. They reject Gibrat’s
Law for Belgium in this period, using the Nadaraya-Watson method. Bosker et al.,
2008 examines the urban population in Germany, 1925-1999, using administrative city
definitions and cut-offs of 50,000 and 100,000. In addition to World War 2 having a
major and lasting impact on city size distributions, he finds that city growth is trend-
stationary, consistent with increasing returns to scale but at odds with Gibrat’s Law
of proportional effect. A working paper by Probst (2017) examines municipalities in
Sweden 1800-2010, using Census records. They find that Gibrat’s Law is rejected in
the sample, earlier because of the growth of smaller locations and later because of city
agglomeration. The “Zipf” coefficient reaches its peak at 1.15 in 1900 then falls to 0.89
in 2010.

Finally, the paper most closely related to ours in setting is Klein and Leunig (2015).
They examine the dynamics of urban growth in England (a large subset of Britain)
during the Industrial Revolution period, 1761-1891. They combine data at the parish
level to form over 10,000 ‘recognisable towns’ for the Census years 1801-1891 and use
data on nearly 600 administrative units known as “hundreds” prior to this. However,
they do not appear to employ a cutoff, with the result that their dataset is weighted
heavily towards smaller municipalities; in 1895, their mean location has a population
of less than 2,500. With this dataset and using the Nadaraya-Watson non-parametric
method, they find that Gibrat’s Law is violated consistently, although violations of
Gibrat’s Law are driven by areas with a population of less than 2,000. They also find
evidence that large places grew too quickly to be consistent with Gibrat’s Law before
1841, especially in locations where the Industrial Revolution took places. The authors
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do not present any estimates of the Zipf coefficient.
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Table 1: Review of Key Papers in the Literature

Author Method Cutoff Country Time Period Unit of analysis

Rosen and Resnick, 1980 OLS Top 50 or 100,000 Cross section of 44
countries

1970 Urban agglomeration
and cities

Eaton and Eckstein, 1997 OLS France: 50,000
Japan: 250,000

France and Japan France: 1876-1990;
Japan: 925 and 1985

Urban areas

Dobkins, Ioannides, et al., 2000 OLS 50,000 US 1900-1990 Metropolitan area

Dobkins and Ioannides, 2001 OLS 50,000 US 1900-1990 Metropolitan area

Davis and Weinstein, 2002 OLS NA Japan -600-1998 Regional density and
city size

Ioannides and Overman, 2003 Local Zipf
exponent

50,000 US 1900-1990 Metropolitan area

Eeckhout, 2004 OLS Different cutoffs
between 42 and
155,000

US 2000 Legally incorporated
“places” or Census
Designated Places

Soo, 2005 OLS; Hill 10,000 Cross section of 73
countries

1971-2001 Urban agglomeration
and cities

Batty, 2006 OLS NA US and GB USA: 1790-2000; GB:
1901-2001; World:
430BD-2000AD

US: “cities and other ur-
ban places”, GB: “urban
places”.

Levy, 2009 OLS NA US 2000 Legally incorporated
”places” or Census
Designated Places.

Rozenfeld et al., 2011 OLS NA US and GB 1981 for GB and 2001 for
US

“city” defined as a max-
imally connected cluster
of populated sites de-
fined at high resolution.

Dittmar, 2020 Theil esti-
mator

5,000 Europe 1300-1800 Urban agglomerations

Ioannides and Zhang, 2017 OLS 1000, 800, 400, 200 China 1368-1911 Walled cities area and
population

Dingel et al., 2019 OLS NA China India and Brazil 2017 Metropolitan areas, re-
constructed with satel-
lite images

Giesen et al., 2010 Hill, OLS DE, US, FR, Brazil, CZE,
Hungary, IT, CH

2000 “Places” for US, “cities”
for DE, “communes” for
FR

Giesen and Südekum, 2011 OLS 100,000 Germany 1975-1997 City proper data within
regions

Small and Elvidge, 2013 OLS Asia 1992-2009 Aggregation from satel-
lite images of lighted ar-
eas

Le Gallo and Chasco, 2008 OLS, SUR 10,000 and 50,000 Spain 1900-2001 Towns and municipali-
ties

Berry and Okulicz-Kozaryn,
2012

OLS 500,000 US 1900-2010 Economic Areas (EAs)
defined by the Bureau
of Economic Analysis of
the US Department of
Commerce

Fragkias and Seto, 2009 OLS One isolated urban
pixel

China 1988-1999 Contiguous urban built-
up areas

Soo, 2007 OLS, Hill 10,000 Malaysia 1957, 1970, 1980, 1991,
2000

Urban areas

Jiang et al., 2015 Hill World 1992, 2001, 2010 Natural cities extracted
from satellite imagery
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Table 2: Summary statistics for the four units

Local Government
District Unitary Authority Travel to Work Area Primary Urban Area

Year N Mean Median N Mean Median N Mean Median N Mean Median
1801 379 26,777 19,894 61 57,273 24,334
1811 379 30,390 22,860 61 68,253 27,972
1821 379 36,038 26,294 61 83,687 32,779
1831 379 41,698 30,373 61 103,386 40,476
1841 379 47,597 34,897 61 124,253 46,980
1851 527 20,910 5,109 379 53,520 38,117 61 148,331 52,238
1861 581 22,679 5,350 380 60,864 42,451 61 176,064 68,048
1871 930 14,864 4,698
1881 955 18,086 6,017 380 78,109 49,224 61 269,204 111,689
1891 998 20,903 6,546 348 83,301 51,926 57 307,997 131,258
1901 1,110 22,429 6,969
1911 1,128 32,217 7,936 380 107,451 62,546 61 409,624 177,354
1921 1,143 30,135 8,595 380 112,550 65,388 61 429,480 183,906
1931 1,077 28,424 9,520 380 117,883 69,578 61 459,634 205,284
1941 986 36,927 14,914
1951 987 47,328 15,549 380 128,564 81,923 61 490,654 220,001
1961 987 48,473 17,462 380 134,810 90,364 61 507,679 244,559
1971 895 53,917 18,698 380 152,092 101,168 61 565,390 289,065
1981 461 139,827 93,292 380 138,840 105,428 61 479,426 268,653
1991 459 114,087 93,146 380 144,473 114,052 243 195,865 87,173 61 487,358 283,121
2001 376 138,409 112,797 380 150,273 119,207 243 108,980 53,298 61 504,148 280,756
2011 347 131,776 97,099 380 161,503 125,499 218 287,873 152,508 61 546,837 276,786

Table 3: Local Government District

Minimum city size Sample size
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1851 2,418 13,050 635 50,000 1851 462 106 523 34
1861 2,621 14,712 844 50,000 1861 483 117 574 38
1871 3,641 11,446 1,516 50,000 1871 574 187 837 33
1881 3,840 14,941 2,178 50,000 1881 670 191 829 46
1891 4,322 18,026 3,364 50,000 1891 676 200 768 62
1901 3,955 18,929 4,268 50,000 1901 797 223 763 75
1911 3,939 22,551 3,503 50,000 1911 842 226 875 99
1921 3,867 27,118 13,490 50,000 1921 878 228 425 128
1931 3,549 30,754 44,416 50,000 1931 857 216 147 133
1939 4,374 41,621 13,067 50,000 1939 840 198 536 160
1951 4,262 46,270 9,715 50,000 1951 846 198 632 182
1961 6,051 51,336 10,552 50,000 1961 772 198 641 205
1971 6,932 52,175 12,071 50,000 1971 707 179 578 187
1981 10,119 150,086 14,241 50,000 1981 459 93 456 407
1991 9,986 145,884 66,557 50,000 1991 457 93 353 403
2001 24,457 187,908 89,542 50,000 2001 374 75 266 360
2011 7,375 209,122 117,237 50,000 2011 347 70 144 285
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Table 4: Unitary Authority

Minimum city size Sample size
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1801 24,379 36,078 17,904 50,000 1801 155 76 207 45
1811 23,427 41,915 20,795 50,000 1811 184 76 208 55
1821 28,318 48,955 25,040 50,000 1821 184 76 205 72
1831 30,373 57,994 27,298 50,000 1831 190 76 210 97
1841 27,620 64,650 27,620 50,000 1841 226 76 226 118
1851 34,956 70,781 28,217 50,000 1851 208 76 238 133
1861 4,160 81,887 32,235 50,000 1861 366 76 238 157
1881 24,903 100,677 70,725 50,000 1881 309 76 112 188
1891 3,961 105,924 94,701 50,000 1891 344 70 76 185
1911 8,748 152,242 116,538 50,000 1911 373 76 100 245
1921 9,551 166,729 112,113 50,000 1921 375 76 112 255
1931 15,728 179,652 105,014 50,000 1931 375 76 118 278
1951 4,152 209,713 104,299 50,000 1951 379 76 135 321
1961 5,860 210,098 108,208 50,000 1961 379 76 144 338
1971 8,450 213,711 124,330 50,000 1971 379 76 138 355
1981 5,095 195,659 115,288 50,000 1981 379 76 164 359
1991 4,129 202,193 118,089 50,000 1991 379 76 178 364
2001 7,276 210,134 119,126 50,000 2001 379 76 191 366
2011 7,375 231,997 137,835 50,000 2011 379 76 168 370

Table 5: Travel To Work Area

Minimum city size Sample size
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1991 7,190 258,218 46,975 50,000 1991 243 49 173 170
2001 4,525 158,499 28,122 50,000 2001 238 49 171 126
2011 7,323 379,654 67,363 50,000 2011 216 43 160 171
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Table 6: Primary Urban Area

Minimum city size Sample size
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1801 1,701 58,324 2,055 50,000 1801 61 13 60 14
1811 2,235 65,695 2,503 50,000 1811 61 13 60 17
1821 2,717 82,816 3,281 50,000 1821 61 13 60 19
1831 3,073 108,566 3,784 50,000 1831 61 13 60 25
1841 3,382 124,548 4,629 50,000 1841 61 13 60 28
1851 3,614 137,176 6,413 50,000 1851 61 13 60 34
1861 3,656 162,451 7,793 50,000 1861 61 13 60 38
1881 13,893 257,805 16,667 50,000 1881 61 13 60 46
1891 19,026 306,445 20,503 50,000 1891 57 11 56 47
1911 31,137 345,479 37,246 50,000 1911 61 13 60 58
1921 36,254 350,494 36,789 50,000 1921 61 13 60 58
1931 35,368 358,630 45,396 50,000 1931 61 13 60 59
1951 41,886 381,132 65,139 50,000 1951 61 13 60 60
1961 48,434 429,253 65,776 50,000 1961 61 13 60 60
1971 65,925 470,256 72,023 50,000 1971 61 13 60 60
1981 70,836 444,240 85,154 50,000 1981 61 13 60 60
1991 80,799 457,568 91,909 50,000 1991 61 13 60 60
2001 85,056 452,404 97,568 50,000 2001 61 13 60 60
2011 90,254 479,924 104,640 50,000 2011 61 13 60 60

Table 7: Gini Coefficient

Local Government District Unitary Authority
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1851 0.715 0.625 0.728 0.603 1851 0.347 0.292 0.363 0.319
1861 0.72 0.632 0.736 0.601 1861 0.48 0.29 0.372 0.338
1871 0.682 0.639 0.712 0.62 1871
1881 0.671 0.618 0.69 0.606 1881 0.437 0.301 0.341 0.39
1891 0.67 0.6 0.682 0.58 1891 0.485 0.293 0.304 0.4
1901 0.678 0.594 0.673 0.561 1901
1911 0.749 0.681 0.753 0.667 1911 0.482 0.266 0.298 0.414
1921 0.682 0.568 0.611 0.538 1921 0.48 0.262 0.304 0.413
1931 0.637 0.466 0.422 0.41 1931 0.468 0.248 0.297 0.414
1939 0.627 0.495 0.555 0.489 1939
1951 0.697 0.598 0.654 0.598 1951 0.424 0.209 0.276 0.385
1961 0.66 0.577 0.631 0.576 1961 0.397 0.203 0.274 0.37
1971 0.662 0.541 0.634 0.543 1971 0.372 0.203 0.256 0.352
1981 0.452 0.45 0.448 0.425 1981 0.335 0.184 0.248 0.319
1991 0.335 0.21 0.278 0.296 1991 0.319 0.176 0.237 0.306
2001 0.302 0.169 0.249 0.287 2001 0.313 0.174 0.236 0.302
2011 0.409 0.161 0.235 0.34 2011 0.321 0.168 0.23 0.311
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Table 8: Gini Coefficient

Primary Urban Area Travel To Work Area
Year Conservative Fraction Deviation Level Year Conservative Fraction Deviation Level
1801 0.627 0.512 0.664 0.521 1801
1811 0.638 0.514 0.668 0.533 1811
1821 0.648 0.512 0.67 0.538 1821
1831 0.664 0.505 0.673 0.559 1831
1841 0.673 0.501 0.678 0.576 1841
1851 0.678 0.502 0.682 0.596 1841
1861 0.685 0.514 0.685 0.604 1861
1881 0.663 0.508 0.663 0.62 1881
1891 0.667 0.549 0.671 0.643 1891
1911 0.646 0.521 0.646 0.639 1911
1921 0.635 0.522 0.638 0.635 1921
1931 0.638 0.532 0.638 0.634 1931
1951 0.622 0.528 0.622 0.622 1951
1961 0.607 0.523 0.607 0.607 1961
1971 0.578 0.492 0.578 0.582 1971
1981 0.558 0.501 0.558 0.562 1981
1991 0.546 0.506 0.546 0.549 1991 0.629 0.407 0.544 0.543
2001 0.544 0.512 0.544 0.547 2001 0.591 0.459 0.436 0.462
2011 0.549 0.522 0.549 0.553 2011 0.605 0.446 0.561 0.529

Table 9: Spline regression for Primary Urban Area and Conservative cutoff - 1

Annual growth rates
1801-1811 1811-1821 1821-1831 1831-1841 1841-1851 1851-1861

00to10 0.0004 0.00001 −0.00002 −0.001 −0.001 −0.002∗
(0.0005) (0.001) (0.001) (0.001) (0.001) (0.001)

10to11 −0.00002 −0.0004 −0.0001 −0.001 −0.00001 0.001
(0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.001)

11to12 −0.0003 0.00002 0.0004 0.001 −0.0001 −0.0004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

12to14 0.001 0.0005 0.0003 0.0004 0.0003 0.0001
(0.003) (0.002) (0.001) (0.001) (0.001) (0.001)

14to17 −0.297 −0.008 −0.004 −0.003 −0.001 −0.0004
(0.591) (0.018) (0.006) (0.003) (0.002) (0.002)

Constant −0.002 0.002 0.002 0.007 0.010∗ 0.016∗∗

(0.004) (0.005) (0.005) (0.005) (0.005) (0.008)

Observations 47 49 51 54 55 55
R2 0.029 0.045 0.038 0.142 0.083 0.080
Adjusted R2 -0.089 -0.066 -0.069 0.053 -0.011 -0.013

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Spline regression for Primary Urban Area and Conservative cutoff - 2

Annual growth rates
1861-1881 1881-1891 1891-1911 1911-1921 1921-1931 1931-1951

00to10 −0.004∗∗∗ 0.0003
(0.001) (0.004)

10to11 −0.001 −0.001 −0.001 0.002 0.004 −0.003
(0.001) (0.001) (0.001) (0.002) (0.007) (0.002)

11to12 −0.001 −0.0002 −0.0004 −0.0001 −0.001 −0.001∗∗
(0.001) (0.0004) (0.0004) (0.0003) (0.0003) (0.0002)

12to14 0.0001 −0.0003 −0.0002 −0.0003 −0.0003 −0.0002
(0.001) (0.0003) (0.0003) (0.0002) (0.0002) (0.0001)

14to17 −0.0004 0.0003 0.0001 0.0001 0.0003 0.0001
(0.002) (0.001) (0.001) (0.0004) (0.0004) (0.0003)

Constant 0.044∗∗∗ −0.001 0.003∗∗∗ −0.001 −0.003 0.004∗∗

(0.010) (0.036) (0.001) (0.001) (0.006) (0.002)

Observations 56 56 55 56 55 56
R2 0.508 0.139 0.188 0.077 0.157 0.321
Adjusted R2 0.458 0.053 0.123 0.005 0.090 0.268

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Spline regression for Primary Urban Area and Conservative cutoff - 3

Annual growth rates
1951-1961 1961-1971 1971-1981 1981-1991 1991-2001 2001-2011

00to10

10to11

11to12 −0.001∗ 0.0002 −0.0002 −0.001∗ −0.001∗∗ −0.001
(0.0004) (0.001) (0.001) (0.0005) (0.0004) (0.0004)

12to14 −0.0003 −0.001 −0.001∗∗∗ −0.0005∗∗∗ −0.0002∗ −0.0001
(0.0002) (0.0004) (0.0004) (0.0002) (0.0001) (0.0001)

14to17 −0.00001 −0.0002 0.001 0.0003 0.0002 0.0002
(0.0004) (0.001) (0.001) (0.0003) (0.0002) (0.0002)

Constant 0.001∗∗∗ 0.001 0.0003 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.001) (0.001) (0.0004) (0.0004) (0.0004)

Observations 56 56 56 56 56 56
R2 0.186 0.073 0.178 0.319 0.207 0.129
Adjusted R2 0.139 0.020 0.131 0.280 0.162 0.079

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Top 5 Primary Urban Area

1801 1861 1911 1951 2011

1, 213, 042 3, 438, 830 7, 867, 873 9, 301, 193 9, 736, 823
234, 934 928, 230 1, 902, 374 2, 247, 942 2, 419, 500
176, 878 721, 475 1, 617, 845 1, 997, 297 1, 876, 194
141, 380 580, 330 1, 321, 586 1, 451, 969 1, 054, 473
108, 641 490, 907 946, 181 1, 053, 225 829, 319

Table 13: Bottom 5 Primary Urban Area

1801 1861 1911 1951 2011

1, 701 3, 656 31, 137 41, 886 90, 254
2, 055 7, 793 37, 246 65, 139 104, 640
2, 297 10, 475 49, 645 66, 857 121, 688
4, 162 10, 504 53, 375 68, 021 123, 867
4, 402 10, 566 53, 649 70, 845 133, 384

Figure 13: Travel To Work Area
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Note: The left panel of this figure shows the number of Travel To Work Area included in the sample for each census year for each cutoff methods. The right panel shows
the size of the smallest Travel To Work Area included in the sample for each cutoff method..
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Figure 14: Size-rank coefficient: Local Government Districts
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Note: The six panels in this figure show the pairwise comparison between all cutoff methods of the absolute value of the Pareto coefficient of Local Government Districts,
for each Census year.

Figure 15: Size-rank coefficient: District/Unitary Authority
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Note: The six panels in this figure show the pairwise comparison between all cutoff methods of the absolute value of the Pareto coefficient of District/Unitary Authority,
for each Census year.

44



Figure 16: Size-rank coefficient: Travel To Work Area
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Note: The six panels in this figure show the pairwise comparison between all cutoff methods of the absolute value of the Pareto coefficient of Travel To Work Area, for
each Census year.

Figure 17: Size-rank coefficient: Primary Urban Area
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Note: The six panels in this figure show the pairwise comparison between all cutoff methods of the absolute value of the Pareto coefficient of Primary Urban Area, for
each Census year.
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Figure 18: Gini coefficient for four different units

Deviation Level

Conservative Fraction

1800 1850 1900 1950 2000 1800 1850 1900 1950 2000

0.2

0.4

0.6

0.2

0.4

0.6

Local Governments Distric Primary Urban Area Travel to Work Area Unitary Authority

Note: This figure shows the evolution of the Gini coefficient for all different cutoff in each area.

Figure 19: Gini coefficient for four different cutoffs
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Note: This figure shows the evolution of the Gini coefficient for all different units for each different cutoff.
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Figure 20: Lorenz curve for Conservative cutoff - Local Government District
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Figure 21: Lorenz curve for Fraction cutoff - Local Government District
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Figure 22: Lorenz curve for Level cutoff - Local Government District
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Figure 23: Lorenz curve for Deviation cutoff - Local Government District
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Figure 24: Lorenz curve for Conservative cutoff - Unitary Authority
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Figure 25: Lorenz curve for Fraction cutoff - Unitary Authority
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Figure 26: Lorenz curve for Level cutoff - Unitary Authority
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Figure 27: Kernel regression: Unitary Authority with Conservative cutoff
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Note: Kernel regression: growth rate for the whole period 1801 to 2011 plotted against initial city size in 1801, and intermediate periods 1801-1861, 1861-1911,
1911-1951 and 1951-2011 plotted against initial size.
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