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1 Introduction

Probability theory is the branch of mathematics that deals with random ex-

periments. These could be simple ones like flipping a coin or rolling a die.

The main underlying idea is that there is some form of randomness in the

outcomes that we (the experimenters) can not resolve. In the natural and life

sciences experiments are readily thought of as scientists constantly perform

them in laboratories. In the social sciences, however, there are no clear-cut

experiments.1 Some examples of common phenomena that social scientists are

thinking of as experiments are: conducting a survey, the formation of prices

on the stock exchange, the realisation of a country’s GDP, the outcome of an

election, etc. It is because of these analogies that we use probability theory in

the same way in the social sciences as in the natural sciences.

Probability theory will form the corner stone of our treatment of inferential

statistics, which is the science/art of using sample data to make inferences

about the entire population. It is important to realise that probability theory

is a subject in and of itself, which happens to be used in an important branch of

statistics. It is neither exclusively used, nor ultimately developed for statistics.

In this course we will only discuss the absolute basics needed for the study of

inferential statistics.2

1This is changing, by the way. Especially in economics many studies are carried out

these days where economists get a group of people together in a “laboratory” to perform

an economic experiment. This usually involves letting the subjects make economic decision

behind a computer.
2Modern probability is seen as a branch of “measure theory”; an abstract mathematical

theory.
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In my opinion, the textbook misses some essential elements in its treatment

of probability theory.3 In this note I try to give a relatively rigorous, but still

intuitive construction of the basic ingredient of any probability analysis: the

probability space. These notes should bee seen to augment Sections 4.1 and 4.2

of the book.

2 Probability Spaces

The mathematical description of a random experiment contains three ingredi-

ents:

1. A list of all the possible outcomes of the experiment. This is called the

sample space and is usually denoted by S.

2. A set consisting of all “events” that we wish to assign a probability to.

This set is called the event space and is denoted by A.

3. A function which assigns a number between 0 and 1 to every event in A.

This function is called a probability and is denoted by P .

The collection (S,A, P ) is called a probability space and is the starting point

of any probability analysis.

Example 1 (Roll a die). Consider the experiment “roll a fair die once”. The

possible outcomes of this experiment are 1,2,3,4,5, or 6. So, S = {1, 2, 3, 4, 5, 6}.4
What are possible “events” in this experiment? Well, there are many possi-

bilities. For example, “number 1 comes up”, or “the number that comes up

is either 3 or 5”, or “an even number comes up”, etc. All these events can

be written as sets: A1 = {1}, A2 = {3, 5}, A3 = {2, 4, 6}, respectively. Note

that all these events are subsets of the sample space S. That is, they contain

some elements (but not necessarily all) of S. Finally, what probability should

we assign to all these events? Before we write this down formally, think about

this for a second. What probabilities would you assign to A1, A2, and A3?

3Most books water down the probability theory to such an extent that it becomes predi-

gested pap, which confuses rather than enlightens. You are too smart for that.
4Mathematicians are, im großen ganzen, lazy people (that’s why, for example, we use the

summation notation). Therefore, we often write this as S = {1, . . . , 6}.
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Since the die is fair we could assign each outcome equal probability. To

compute the probability of an event A ∈ A (remember A is the set containing

all events we want to assign a probability to) we simply put

P (A) =
|A|
|Ω| , (1)

where |A| denotes the number of elements in the set A. So, in this example we

would get

P (A1) =
|{1}|

|{1, . . . , 6}| =
1

6
,

P (A2) =
|{3, 5}|
|S| =

2

6
=

1

3
, and

P (A3) =
|{2, 4, 6}|

6
=

1

2
.

You probably came to the same conclusion already.

Let’s summarise two aspects that are made clear by this example.

1. Events can be written as subsets of the sample space; they simply contain

a certain number of possible outcomes.

2. If all outcomes are deemed equally likely we can assign the probabil-

ity (1). This probability is usually referred to as the classical probability.

Example 2 (Coin flip). Consider the experiment “flip a fair coin twice”.

There are four possible outcomes of this experiment: Heads both times (HH),

Tails both times (TT ), Heads the first time and Tails the second (HT ), and

vice versa (TH). In other words S = {HH,HT, TH, TT}. Let’s consider

the following two events: “the first coin flip gives H” and “both flips give a

different outcome”. In set notation: A1 = {HH,HT}, and A2 = {HT, TH},
respectively. What probabilities to assign? Well, the coin is fair, so for each

flip each outcome is equally likely. In other words,

P (A1) =
|{HH,HT}|

|S| =
2

4
, and P (A2) =

1

2
.

After studying these two examples you might be left with some questions,

like:

1. do I have to assume that each outcome is equally likely? and
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2. how do I know that the die or coin is fair?

The answers to these two questions are as follows:

1. no, not at all! See Example 3 below, and

2. you don’t. That’s exactly why we study statistics! Take the coin exam-

ple. In real life we never know whether a coin is actually fair. So, we

flip the coin repeatedly and compute the frequency of Heads to estimate

the probability of heads coming up. The study of statistics is all about

procedures to make exactly these kind of inferences.

Example 3 (Example 1 cont’d). Suppose that you have a feeling that the die

you are about to roll is loaded. It may have been given to you by some River

Boat Gambler (or worse, a stock broker), and you suspect that it is much more

likely that the number 1 comes up. How to assign a probability in this case?

You could start by assigning a number pk to all possible outcomes k ∈ S. A

natural probability would then be to set

P (A) =
∑

k∈A

pk. (2)

For example, if A = {1, 2} and B = {1, 3, 5}, then

P (A) = p1 + p2, and P (B) = p1 + p3 + p5,

respectively.

Maybe you have rolled the die a few times and conclude that p1 = 1

2
and that

all other outcomes are equally likely. Or maybe you simply believe that this is

the case. In the former case we speak about the relative frequency definition

of probability, whereas in the latter case we speak of the subjective definition.

Whatever the case, could you now, for example, set p2 = · · · = p6 = 1

6
? Well,

no. If you were to do that then you would run into a lot of problems later on.

In fact, I haven’t been entirely honest earlier on when I implied that the

probability could be any function assigning numbers between 0 and 1 to events

in A. I should have added the following restrictions, which in probability

theory have the status of axioms.5

5In mathematics an “axiom” is a statement that represents a convention, a statement

that we do not question. The trick is to build useful mathematics with as few axioms as

possible. For the set of real numbers, R, for example, it is an axiom that x+y = y +x. The

fact that 0 · x = 0, all x ∈ R, however, is not an axiom, even though you probably accept it

without questioning. In fact, it can be proved from surprisingly few axioms.
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Axiom 1. A probability is such that P (S) = 1.

Axiom 2. A probability is such that if A1, A2, . . . are mutually exclusive events

in A (that is, Ai ∩ Aj = ∅, all i, j), then

P (A1 ∪ A2 ∪ · · · ) =
∑

i

P (Ai).

The second axiom looks difficult, but makes intuitive sense. If I have two

events that can not occur simultaneously, then the probability of the one or 6

the other taking place is just the sum of their respective probabilities.

Example 4 (Example 3 cont’d). If we take p1 = 1

2
and p2 = · · · = p6 = 1

6
,

then P – as defined in (2) – does not satisfy the axioms. Note that {1}, {2},
{3}, {4}, {5}, and {6} are mutually exclusive events (you can not have two

or more numbers coming up at the same time). So, from the second axiom it

follows that

P ({1} ∪ · · · ∪ {6}) =
6∑

i=1

pi =
1

2
+

1

6
+ · · · + 1

6
=

8

6
=

4

3
.

In addition, we have that

{1} ∪ · · · ∪ {6} = {1, 2, 3, 4, 5, 6} = S.

In other words, the second axiom would imply that

P (S) = P ({1} ∪ · · · ∪ {6}) =
4

3
> 1,

which contradicts the first axiom. So, this choice for P is not a probability. It

is easy to see that the only probability that satisfies the axioms, that assigns

probability 1/2 to the outcome 1 and equal probabilities to the other outcomes,

and that is consistent with the frequency definition (2) has

p1 = 1

2
, and p2 = · · · = p6 =

1

10
.

(Check that this indeed satisfies the axioms!)

This example shows a feature that I find so important that I would want

you to put in a frame and hang above your bed:

6We always use the mathematical “or”: either one or the other or both.
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The (mathematical) theory of probability does not tell you what probability

to choose. It merely gives you a consistent framework to make probability

calculations, once YOU have decided on the appropriate probability.

This is a very important statement. It implies that – from a probability

theory point of view – the probability does not exist. It is something we

choose using procedures that lie outside the realm of mathematics: experience,

intuition, etc. In statistics we often (implicitly) choose a particular family of

probabilities, among we then choose one based on sample information.7

3 Continuous Sample Spaces

So far, we have only looked at examples with a discrete state space. Let’s take

a look at a simple example with a continuous state space and the problems

it creates. The example is meant as an illustration of the many subtleties

that appear in probability theory. It will not show up in the exam, but some

feeling for the problems with continuous state spaces will make life easier in

a few weeks time. Continuous sample spaces, namely, are used very often in

statistics (any time we deal with a continuous variable, for example).

Example 5 (Draw a random number). Consider the experiment “draw a ran-

dom number from the interval [0, 1]”. Modelling this simple example leads to

complicated problems. The sample space is easy enough: S = [0, 1]. However,

the event space A is very complicated. Essentially, you cannot assign a proba-

bility to every subset of the interval [0, 1], as that would lead to inconsistencies.

The reasons why are way beyond the scope of this course and would take us

firmly into measure theory territory. The event space is usually taken to be

the “Borel σ-field on [0, 1]”. The only thing to know about this animal is that

it contains all subsets of [0, 1] that we will ever be interested in. Defining the

probability on A is also not an easy thing. Let’s first look at subsets of the

form [a, b] ⊆ [0, 1]. It would make sense to define the probability P such that

P ([a, b]) = b − a, (3)

so, for example, P ([0.25, 0.75]) = 0.5 and P ([0, 1/3]) = 1/3, which seems a

logical choice. This definition is then extended to all sets in A. A consequence

7This sounds rather cryptic, but should become clearer later on.
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of this choice of probability is that

P ({a}) = 0, all a ∈ [0, 1].

The reason for this is – again – too complicated, but it should be understood

that it is NOT linked to (1) whatsoever. Many people reason as follows:

P ({a}) =
|{a}|
|S| =

1

|[0, 1]|“ = ”
1

∞“ = ”0.

This reasoning is false and has no mathematical meaning. To see that it does

not work, consider the set Q ∩ [0, 1].8 Applying (1) then leads to

P (Q ∩ [0, 1]) =
|Q ∩ [0, 1]|
|[0, 1]| “ = ”

∞
∞ =?

Instead it can be shown that

P (Q ∩ [0, 1]) = 0.

This leads to the following interesting paradox. The probability of any number

being drawn is 0. In fact the probability of drawing one of infinitely many

rational numbers is 0 as well. Still, however, the probability of some number

being drawn is 1, since P ([0, 1]) = 1 by the first axiom. In other words, with

probability 1 an event with probability 0 occurs! This implies that “probability

0” does not mean “impossible”.

Is your head spinning yet?

8That is, the set of all rational numbers (fractions) in the interval [0, 1]. This set contains

infinitely many elements, but not, for example, 1

2

√
2.
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