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Abstract

This paper takes a fresh look at the estimation of economic base multipliers.

It uses recent developments in both nonstationary and nonlinear inference to

consider issues surrounding the derivation of such multipliers for Northern Ire-

land. It highlights the problem of distinguishing between nonstationarity and

nonlinearity in empirical work. The results of standard unit root and cointegra-

tion analysis call into question the adequacy of that framework for estimating

employment multipliers. There is strong evidence of nonlinearity; and mod-

elling using random field regression supports the findings of Harrison and Bond

(1992) that there is substantial parameter instability or nonlinearity in the data.
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1. INTRODUCTION

While there are concerns about the theoretical validity of economic base multi-

pliers (see, for example, Pfester, 1976) they provide policy makers with a simple way

to estimate the impact of new policies.1 Most inference on economic base multipli-

ers is now conducted within the cointegration framework, introduced independently

by Bond (1990), LeSage (1990) and Brown, Coulson and Engle (1992). In this

framework, the underlying data are viewed as being nonstationary I(1) series. The

long-run multipliers can be obtained from a cointegrating ‘levels’ model and the

short-run multipliers from a dynamic error-correction model (ecm). Bond (1990)

and Brown, Coulson and Engle (1992) also suggest that the economic base can be

identified by maximising the likelihood of the series being cointegrated. While this

approach to estimating multipliers seemed sound, concerns were soon raised. Har-

rison and Bond (1992) discussed the possibility of the observed dynamic behaviour

being due to structural instability. Since then there have been several developments

in the testing and estimation of both nonstationary and nonlinear economic models.

The aim of this paper is to apply some of these developments to the estimation of

economic base multipliers.

The structure of the paper is as follows. In Section 2, the work of Bond (1990),

LeSage (1990), Brown, Coulson and Engle (1992) and Harrison and Bond (1992)

is briefly outlined. In Section 3, two developments in econometric methodology,

namely, fractional integration and random field inference, are introduced. The re-

sults of applying techniques from these areas to the original data of Bond (1990)

and Harrison and Bond (1992) are discussed in Section 4. The paper concludes, in

Section 5, by discussing whether these new techniques provide a sounder method

for estimating economic base multipliers than the cointegration approach employed

previously.

2. ECONOMIC BASE MULTIPLIERS AND COINTEGRATION

In the economic base approach, the economy of a region is normally divided into

three sectors: the base or export sector (X) that produces output for consumption
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on a wider market; the non-base or service sector (S) that is mainly concerned with

servicing the local economy; and the autonomous sector (A), which produces for na-

tional requirements. Let {Xt}T
t=1, {St}T

t=1 and {At}T
t=1 be time series of employment

in these respective sectors. Considering the equation

St = α + β1Xt + β2At + εt, t = 1, 2, . . . , T, (1)

where εt is a white noise error term, the base and autonomous long-run employment

multipliers, i.e., the long-run changes in total employment that result from a unit

increase (or decrease) in employment in the base and autonomous sectors, respec-

tively, are given by (1 + β1) and (1 + β2). Placing the discussion in a cointegration

framework, it is argued that {Xt}T
t=1, {St}T

t=1 and {At}T
t=1 are I(1) series and that

Equation (1) is a cointegrating ‘levels’ equation. If this is the case, the Represen-

tation Theorem (see, for example, Engle and Granger, 1987) implies that an ecm

representation of Equation (1) must exist. The standard form of such a model is

∆St = α1 +
p∑

i=1

ϑi∆St−i +
q∑

i=0

ϕi∆Xt−i +
r∑

i=0

λi∆At−i + ςZt + νt, t = 1, 2, . . . , T,

where ∆ is the first difference operator, such that, for example, ∆Xt = Xt − Xt−1,

Zt is an error-correction term, and νt is a white noise disturbance. In many studies,

Zt is taken to be ε̂t−1, the lagged ordinary least squares residual from Equation (1).

The standard approach to estimating economic base multipliers then reduces to:

• Allocating employment to either base, autonomous or service sectors.

• Testing the order of integration of the series.

• Estimating the levels models.

• Estimating the ecm, using a general-to-specific modelling strategy.

• Re-allocating employment and repeating the procedure until the optimal coin-

tegrating relationship is found.

The simplicity of the approach is appealing but hides many problems for the

unwary. Unit root tests such as the augmented Dickey-Fuller (1979) (adf) test
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are known to have low power. Only with the work of MacKinnon (1996) did reli-

able figures for the critical values and asymptotic p-values for these tests become

available. There is growing disquiet about the ‘knife-edge’ nature of the I(0)/I(1)

dichotomy; see, for example, Maynard and Phillips (2001). Perron (1989) and others

raised the problem that it is difficult to distinguish between stationary series with

structural breaks and nonstationary series. Some of these points were taken up in

Harrison and Bond (1992), where various tests for structural breaks, including that

of Bai, Lumsdaine and Stock (1998), and Kalman filtering were used to investigate

the structural stability of the models used in Bond (1990). In recent years, two

approaches to econometric modelling have been developed that may help to address

some of these issues. In the area of nonstationarity, more powerful unit root tests

have been developed, as well as the methodology for handling fractionally integrated

series, including the introduction of a simple fractional adf (fadf) test. In the area

of nonlinear inference, there have been developments both in testing for structural

breaks and in more general inference, using the concept of random fields. This pa-

per concentrates on the use of the fadf and random field regression approaches to

explore the characteristics of economic base multipliers.

3. FRACTIONAL INTEGRATION AND RANDOM FIELDS

In this section, the parametric test for fractional integration introduced by Dolado,

Gonzalo and Mayoral (2002), and the random field (rf) approach to nonlinearity

proposed by Hamilton (2001), are briefly described. Both will be used in the fol-

lowing section to explore the validity of the standard cointegration approach to

estimating economic base multipliers.

Fractional Integration

A series {yt}∞t=0 is said to be integrated to order d, denoted by I(d), if the series

must be differenced d times before it is at least asymptotically stationary. In the

classical approach, d is an integer, usually unity, and the majority of empirical

economic investigations have involved this I(1)/I(0) framework. That is, either

∆yt = yt − yt−1 or yt, is taken to be (asymptotically) stationary. By allowing for

4



fractional integration, the restriction that d is an integer is relaxed. This leads to a

more general formula for an integrated series of order d, given by

∆dyt = yt − dyt−1 +
1
2!

d(d − 1)yt−2 − . . . +
(−1)j

j!
d(d − 1) . . . (d − j + 1)yt−j + . . .

In the case where 0 < d < 1, it follows that not only the immediate past value of yt,

but values from previous time periods influence the current value. If 0 < d < 0.5,

then the series {yt}∞t=0 is stationary; and if 0.5 ≤ d < 1.0, then {yt}∞t=0 is non-

stationary.

The Fractional Augmented Dickey-Fuller Test

Dolado, Gonzalo and Mayoral (2002) proposed a test for fractional integration

that is, perhaps, simpler to apply than the lm test used by Robinson (1994), and

in the case where a consistent estimate of d is used, whose test statistic follows a

standard normal distribution. The test can be viewed as a fractional version of the

augmented Dickey-Fuller test, and involves estimating the equation

∆yt = θ∆dyt−1 +
p∑

i=1

∆yt−i + εt.

The test of the null hypothesis H0 : θ = 0 is a test of the hypothesis that d = 1

against the alternative that 0 < d < 1.

Various consistent estimators of d are available. Using an ‘over-differenced’

ARFIMA model, i.e., using ∆yt rather than yt, two parametric estimates of d can be

obtained using the Doornik and Ooms (1999) ARFIMA package. The first is the exact

maximum likelihood (eml) estimator, which uses the algorithm suggested by Sowell

(1992). This approach requires that d < 0.5, which together with the problem of

drift is another reason for using the ‘over-differenced’ model; see, for example, Smith,

Sowell and Zin (1997). The second is an approximate maximum likelihood estimator

based on the conditional sum of squared näıve residuals, developed by Beran (1995)

and called by Doornik and Ooms (1999) a nonlinear least squares (nls) estimator.

Two standard semiparametric estimators are also available in the same package: the

log-periodogram regression method introduced by Geweke and Porter-Hudak (1983)
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(gph), and the semiparametric Whittle estimator of Robinson (1995) (gsp). These

semiparametric estimators of d have the advantage that they are robust against

the misspecification of the short-run dynamics of the process, unlike the parametric

estimators. However, they can be sensitive to the specification of the frequency.

Investigating Nonlinearity Using The Random Field Approach

Diebold and Inoue (2001), building on the work of Perron (1989), highlighted

the problems of distinguishing between the possibilities that a series is fractionally

integrated or nonlinear. A general approach to investigating nonlinearity in economic

relationships is random field regression, introduced by Hamilton (2001). Dahl (2002)

showed that the random field approach has relatively better small sample fitting

abilities than a wide range of parametric and nonparametric alternatives, including

the logistic (lstr) and exponential (estr) models commonly used in modelling

nonlinearity as a smooth transition autoregressive process.

If yt is stationary, εt is a NID(0, σ2) error and xt is a k-vector of explanatory

variables that may include lagged dependent variables, then the basic regression

model is of the form

yt = µ(xt) + εt, (2)

where the functional form µ(xt) is unknown and assumed to be the outcome of a

random field. Hamilton (2001) argues for representing the conditional mean func-

tion, µ(xt), as consisting of two components. The first is the usual linear component,

while the second, a nonlinear component, is treated as stochastic and hence unob-

servable. Both the linear and nonlinear components contain unknown parameters

that need to be estimated. Following Hamilton, the conditional mean function can

written as

µ(xt) = α0 + α′xt + λm(x̄t), (3)

where x̄t = g � xt, g is a k-vector of parameters and � denotes the Hadamard

product of matrices. The function m(x̄t) is referred to as the random field. If

the random field is Gaussian, it is defined fully by its first two moments. If Hk

is the covariance matrix of the random field, with a typical element Hk(x, z) =
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E[m(x)m(z)], Equation (2) can be rewritten as

yt = α0 + α′xt + ut,

where ut = λm(x̄t) + εt, or in matrix form

y = Xβ + u, (4)

where β = [α0 α′]′. It follows, therefore, that

u ∼ N(0, λ2Hk + σ2IT ). (5)

By treating equations (4) and (5) as a generalised least squares problem, the profile

maximum likelihood function associated with the problem can be obtained and

maximised with respect to the various parameters of interest. The only difficulty

is that the form of the covariance matrix is unknown. Hamilton derives Hk as

a simple moving average representation of the random field, based on g using an

L2-norm measure. He shows that even under fairly general misspecification, it is

possible to obtain consistent estimators of the conditional mean. Additional results

on the consistency of the parametric estimators obtained from this approach are

given in Dahl, González-Rivera and Qin (2005).

Testing For Nonlinearity Using Random Fields

The use of random field models provides an attractive way of estimating and test-

ing for nonlinear economic and financial relationships. The additive random field

function used by Hamilton (2001) suggests that a simple method of testing for non-

linearity is to check if λ, or λ2, is zero or not. Hamilton showed that if λ2 = 0, and

the nonlinear model is estimated for a fixed g, the maximum likelihood estimate λ̃2

is consistent and asymptotically normal. Thus a test based on the use of the stan-

dard normal distribution is possible, though computationally complex. Given the

assumption of normality and the linearity of Equation (2), under the null hypothesis

that λ2 = 0, a simpler alternative uses the Lagrange multiplier principle. Hamilton
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showed that provided the covariance function of the random field can be derived,

for a fixed g (Hamilton uses the mean of its prior distribution) this only requires

a single linear regression to be estimated. Hamilton derived the appropriate score

vectors of first derivatives, for up to k = 5, along with the associated information

matrix, and proposed a form of the lm test for practical application. As λE
H(g),

the test statistic,2 is distributed as χ2
1 under the null hypothesis, linearity would be

rejected if λE
H(g) exceeded the critical value χ2

1,α, for the chosen level of significance,

α. For example, at the α = 5 per cent level, the null hypothesis would be rejected

if λE
H(g) > 3.84.

The usefulness of the Hamilton lm test depends on a set of nuisance parameters

that are only identified under the alternative hypothesis. As Hansen (1996) shows,

dealing with unidentified nuisance parameters by assuming full knowledge of the

parameterised stochastic process that determines the random field may have adverse

effects on the power of the test. To take account of this, Dahl and González-Rivera

(2003) introduced a series of lm tests that extends the Hamilton approach. The

first, the λE
OP (g) test, like Hamilton’s approach, assumes knowledge of the covariance

matrix, but its behaviour is based on the L1-norm. The nuisance parameters are still

present, but in this case only enter the test in a linear fashion. The second, the λA
OP

test, only assumes that the covariance function is smooth enough to be approximated

by a Taylor expansion. The final approach is a test of the null hypothesis H0 : g = 0

called the gOP test, which makes no assumption about either the covariance function

or λ. Dahl and González-Rivera (2003) show that the λA
OP and gOP tests have, in

many circumstances, better power than other tests of nonlinearity.3

Estimating Random Field Models

The full power of Hamilton’s (2001) random field approach is only realised when

the parameters λ and g are estimated. In particular, the estimated value of g can be

used for inference on the form of the nonlinearity. A highly significant gi, where i =

1, . . . , k, suggests that the corresponding explanatory variable plays an important

role in the nonlinearity of the model. Hamilton showed that estimating the unknown

parameters, ϕ = {α0,α,g, σ2, λ}, can be reduced to maximum likelihood estimation
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of a reparameterisation of equations (2) and (3):

η(y,X;g, ζ) = −T

2
ln(2π) − T

2
ln σ2(g, ζ) − 1

2
ln |W(X;g, ζ)| − T

2
,

β̃(g, ζ) = [X′W(X;g, ζ)−1X]−1[X′W(X;g, ζ)−1y], (6)

σ̃2(g, ζ) =
1
T

[y − Xβ̃(g; ζ)]′W(X;g, ζ)−1[y − Xβ̃(g; ζ)], (7)

where ζ = λ/σ and W(X;g, ζ) = ζ2Hk + IT . The profile likelihood can be max-

imised with respect to (g, ζ), using standard maximisation algorithms. Once esti-

mates for g and ζ have been obtained, equations (6) and (7) can be used to obtain

estimates of β and σ. As Bond, Harrison and O’Brien (2005) point out, however,

care needs to be taken when maximising the likelihood due to computational issues.

Also, as Hamilton (2005) explains, it is possible for the nonlinearity tests based on

λ to be highly significant, but the results of the nonlinear optimisation of the likeli-

hood function to suggest that ζ is insignificant. This may relate to what, in the time

series literature, is known as the “pile-up” phenomenon associated with numerical

optimisation. This may signal that the covariance structure used for the random

field, if not the normality assumption itself, may not be entirely appropriate; see

DeJong and Whiteman (1993) and Hamilton (2005).

4. METHODOLOGY AND RESULTS

To investigate the usefulness of both Dolado, Gonzalo and Mayoral’s (2002) fadf

test and the random field based nonlinearity tests in helping to explore economic

base multipliers, the data and models discussed in Bond (1990) were used. The

data relate to quarterly employment estimates for Northern Ireland for two time

periods: June 1959 to June 1971 and June 1978 to December 1986. Two groupings

of employment at Standard Industrial Classification (sic) level were considered. In

the first, Model 1, the construction sic was placed in the autonomous sector; in the

second, Model 2, construction was placed in the non-base sector. The base sector is

the same for both models.

To begin, the standard I(1)/I(0) analysis using the adf was conducted using the
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strategy of Dolado, Jenkinson and Sosvilla-Rivero (1990), to determine whether the

series are trend stationary or difference stationary. The lag length for the adf test

was determined using the modified Akaike information criterion (maic), which Ng

and Perron (2001) showed to be a generally better decision criterion than others,

as it takes account of the persistence found in many series. The Kwiatkowski,

Phillips, Schmidt and Shin (1992) (kpss) and Ng and Perron (2001) (np) tests

were also applied. The latter is generally more powerful against the alternative

of fractional integration than the standard adf test (Perron and Ng, 1996). The

fadf test of Dolado, Gonzalo and Mayoral (2002) is then employed, using four

estimators of the differencing parameter d, namely, eml, nls, gph and gsp, provided

by the Ox package ARFIMA (Doornik and Ooms, 1999). The maic is again used to

determine the lag length in the fadf test equation. The rf tests for nonlinearity

are then applied to the various specifications of the model, the Gauss code provided

at http://weber.ucsd.edu/~jhamilto/ being used for this. To investigate further

the possible causes of any nonlinearity, the random field model is estimated by

maximising the profile likelihood function.

The results of preliminary unit root tests are given in Table 1, which along with

all other tables, can be found in the Appendix. The adf test results vary from those

presented in Bond (1990) and Harrison and Bond (1992), as the maic criteria for

determining lag lengths, the testing procedure of Dolado, Jenkinson and Sosvilla-

Rivero (1990), together with the probabilities derived by MacKinnon (1996), were

used. For all series, there was no evidence of a trend, and only for two series in

the latter period, Base and Autonomous in Model 2, was there any evidence of

a constant term in the adf regression. The results presented in Table 1 are less

clear than those given in Bond (1990). The adf tests suggest that all series are

I(1), with the exception of the two series which included a constant in the Dickey-

Fuller regression; these were both found to be I(0). The kpss test, which has a

null hypothesis of stationarity, only rejects the null for four series, including the two

series which the adf suggests might not be I(1). The np test, which has a null of

I(1), does not reject the null for any series. It is noteworthy that the kpss test does

not reject the null of stationarity in six cases in which the other two tests do not
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reject the unit root null.

Table 2 contains the results of the fractional integration analysis. In many cases

the estimate of d was 1 or more, precluding the use of the fadf test. The table would

seem to suggest that most series are not fractionally integrated. In the first time

period, 1959-1971, only the two Autonomous series seem likely to be fractionally

integrated, though the conclusion is complicated by the existence of estimates of d

for the series of 1 or more. For the second time period, 1978-1986, only the Non-

base series in Model 1, and the Autonomous series in Model 2, appear likely to be

fractionally integrated. Again, inference is complicated by the differing values of d.

The results of the standard ‘levels’ regression models are given in Table 3. The

estimates are similar to those obtained in Harrison and Bond (1992). The results

of this I(1)/I(0) analysis are different, however, given the findings of the unit root

analysis discussed above. Using the Dolado, Jenkinson and Sosvilla-Rivero (1990)

methodology, and the more precise MacKinnon (1996) probabilities, the adf tests

suggest that Model 1 is the most likely to be a cointegrating regression for both time

periods. However, for all models, in both time periods, the np test suggests that

there is no cointegration, while the kpss test suggests that there is.

Table 4 presents the results of the various random field based tests for nonlin-

earity. For the first time period, 1959-1972, the tests nearly always reject the null

hypothesis of linearity. The gOP test is the only test that fails to reject the null

hypothesis of linearity for Model 1, both with and without a trend. For the later

time period, 1978-1986, the results are more confusing. For all models, at least one

of the tests fails to reject the null hypothesis of linearity. In three of the models,

the gOP test strongly fails to reject the null. In the one model where the gOP test

rejects the null hypothesis, the λE
H(g) test strongly fails to reject it. For Model 1

without a trend and Model 2 with a trend, two tests fail to reject the null hypothesis.

Both the λE
H(g) and λA

OP tests, however, reject the null of linearity in every case,

when bootstrapped p-values are used for the λA
OP test, at the 5 per cent level of

significance. This is noteworthy, given the findings of Harrison and O’Brien (2007),

referred to in endnote 3.

Finally, Table 5 gives the results of trying to fit Hamilton’s (2001) random field
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regression model to the data. These results were obtained using various algorithms

and various initial parameter values for the numerical optimisation of the likelihood

function. The estimates presented are those that globally maximised the likelihood

function for the particular model; see Bond, Harrison and O’Brien (2005) and Hamil-

ton (2005) for a discussion of the issues surrounding the estimation of random field

models. The results are interesting and need careful interpretation. The most ob-

vious result is that in the second period, it proved impossible to get the numerical

optimisation algorithms to converge for Model 1 when no trend was present, and

for Model 2 when a trend was present. It is for these two models that the tests for

nonlinearity, reported in Table 4, often fail to reject the null hypothesis of linearity.

Also, from Table 3, it is the no-trend version of Model 1 that is more likely to be a

cointegrating relationship, according to the results of the adf test. The two models

that have been estimated for the latter period suggest that either the nonlinearity

in Model 2 without a trend is due mainly to the Base series, or to a time trend in

Model 1, if this is included. In both cases, however, the size of the standard error

for ζ would throw doubt on the existence of a nonlinear relationship. The problem

of pile-up, introduced previously, should be borne in mind in such cases. For the

earlier period, 1959-1972, the results strongly support the arguments put forward

in Harrison and Bond (1992) for nonlinearity in the relationships. The results for

both models without a trend would suggest that the main cause of the nonlinearity

is the Autonomous series; and it is noteworthy that in several cases the estimated

parameters in the linear component of the random field regression are similar to

the corresponding estimates from the ‘levels’ models given in Table 3. When a

trend is included, this becomes the main source of nonlinearity for both models.

However, for Model 2 when a trend is included, the size of the standard error for

ζ again raises questions about the existence of a nonlinear relationship, although

once again, this result may be attributable to the pile-up phenomenon. Finally, and

perhaps importantly, for all models where a trend is included, the standard errors

for all occurrences of the Base and Autonomous variables would suggest that these

have little statistical impact on the models. This may suggest that the best way to

explain the Non-base series is by a simple univariate representation.
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5. CONCLUSION

This paper has re-examined the issue of estimating regional employment multi-

pliers using recent developments in econometric methodology concerning fractional

integration and random field regression. The theoretical background to employment

multipliers has been outlined, as has the particular approach to fractionality offered

by the fractional augmented Dickey-Fuller test of Dolado, Gonzalo and Mayoral

(2002) and the approach to nonlinear inference suggested by Hamilton (2001). The

findings reported have highlighted the potential difficulties of placing the study of

employment multipliers in the I(1)/I(0) econometric framework, the approach sug-

gested by Bond (1990), LeSage (1990), and Brown, Coulson and Engle (1992), and

widely adopted thereafter.

These difficulties might relate to the low power of unit root tests, i.e., the series

Base, Autonomous and Non-base may not be I(1), despite indications to the con-

trary from unit root tests. A ‘levels’ regression model will not therefore represent

a cointegrating relationship, but rather a ‘spurious’ regression. Adf tests, imple-

mented using the procedure of Dolado, Jenkinson and Sosvilla-Rivero (1990) and the

maic selection criterion, appear to suggest unit roots for most variables. The kpss

test offers contradictory results in many cases, while the np test, however, generally

confirms the findings of the adf test.

While we suggested that these difficulties might also relate to fractional integra-

tion of the processes generating the series used, our results show that, in the cases

examined, this possibility is unlikely and that difficulties can not be overcome solely

by moving to a fractional integration framework.

Proceeding on the assumption that all variables are I(1), the Engle-Granger

two-step procedure offers limited support for cointegration when the adf test is

employed. By contrast, there is no support for cointegration whatsoever when the np

test is used, yet full support for cointegration when the kpss test is used. This result

appears to call into question the appropriateness of the cointegration framework for

investigating employment multipliers. This finding is tentative, of course, and should

be tempered by the fact that it is based on just one dataset. Further investigations

need to be undertaken in this area.
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Another possibility is that the processes in question may be stationary but para-

metrically unstable or nonlinear. As is well known, in such a situation, standard

unit root tests are not likely to reject the null hypothesis of a unit root and coin-

tegration analysis may be adopted mistakenly. Our results provide strong evidence

of nonlinearity in the data. Of the tests employed here, those found to be most

powerful by Harrison and O’Brien (2007) reject the null of linearity in every case,

at the 5 per cent significance level.

When the nonlinearity is modelled using a random field regression, the results

remain puzzling. Although the failure of the numerical optimisation in some cases

is troubling, it is unsurprising as similar failures have been documented previously

(Bond, Harrison and O’Brien, 2005; Hamilton, 2005). The results for the two models

and time periods differ substantially. For the earlier sample, the series Autonomous

is found to be nonlinearly significant. For the later period, however, it is the Base

series that is found to be significant. If a time trend is included in the specification,

both Autonomous and Base are nonlinearly insignificant, and sometimes linearly

insignificant, but the time trend is highly significant for both models and sample

periods. This strongly suggests that there is parameter instability or nonlinearity in

the data examined, in support of the findings of Harrison and Bond (1992).
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Notes

1A good starting point for recent discussions on economic base multipliers is Dietzenbacher

(2005).

2The notation used here is that of Dahl and González-Rivera (2003). The superscript E indicates

that full knowledge of the parametric nature of the covariance function is assumed. The alterna-

tive, denoted by superscript A, makes no specific assumption about the covariance function. The

subscript H shows that the Hessian is used for the information matrix. The alternative subscript

OP indicates that the outer product of the score function is used for the information matrix.

3Interestingly, in a forthcoming paper, Harrison and O’Brien (2007) find that the λA
OP test is

the most powerful of the three tests proposed by Dahl and González-Rivera (2003), for a range of

data and model specifications. Its power was found to be comparable to the λE
H(g) test. They also

suggest that the gOP test performs badly in small samples, and that the asymptotic p-values of the

test in this case are particularly unreliable.
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APPENDIX

TABLES

Table 1: Basic I(1)/I(0) Analysis

Model Series adf
(prob.(a))

kpss(b) np(c)

1959 - 1971

Both
Base −0.35

(0.55)
N N

Model 1
Autonomous 2.43

(0.99)
R N

Non-base 0.80
(0.88)

N N

Model 2
Autonomous 2.29

(0.99)
R N

Non-base 0.25
(0.75)

N N

1978 - 1986

Both

Base −1.50(∗)
(0.07)

R N

Model 1
Autonomous −0.20

(0.61)
N N

Non-base −0.27
(0.58)

N N

Model 2
Autonomous −2.06(∗)

(0.02)
R N

Non-base −0.12
(0.63)

N N

a: Probabilities derived from MacKinnon (1996) unless otherwise noted.
b: N / R = null of stationarity not rejected / rejected at 5 per cent level.
c: N / R = null of unit root not rejected / rejected at 5 per cent level.
* Constant term included in test; probabilities from normal distribution.
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Table 2: Fractional Analysis

Model Series eml nls gph gsp

fadf(a)

1959 - 1971

Both
Base 0.79

(1.13)
0.77
(1.13)

0.74
(0.18)

0.97
(0.16)

-1.62 -1.60 -1.56 -1.83
Model 1

Autonomous 0.82
(0.13)

0.81
(0.12)

1.11
(0.18)

1.10
(0.16)

3.75 3.74 .. ..
Non-base 0.62

(0.12)
0.64
(0.11)

0.81
(0.18)

0.70
(0.16)

1.38 1.39 1.44 1.43
Model 2

Autonomous 0.37
(0.13)

0.48
(0.13)

1.02
(0.18)

0.96
(0.16)

6.49 6.05 .. 4.15
Non-base 0.69

(1.12)
0.70
(1.11)

0.93
(0.18)

0.96
(0.16)

1.61 1.66 1.92 1.94

1978 - 1986

Both
Base 1.33

(0.13)
1.38
(0.15)

1.11
(0.23)

1.07
(0.18)

.. .. .. ..
Model 1

Autonomous 1.30
(0.21)

1.20
(0.16)

0.95
(0.23)

0.92
(0.18)

.. .. -1.16 -1.14
Non-base 1.02

(0.15)
1.02
(0.15)

0.85
(0.23)

0.76
(0.18)

.. .. 3.20 3.04
Model 2

Autonomous 1.18
(0.26)

1.09
(0.13)

0.78
(0.23)

0.92
(0.18)

.. .. 3.11 3.00
Non-base 1.09

(0.16)
1.09
(0.17)

1.38
(0.23)

1.21
(0.18)

Note: standard deviations in parentheses.
a: fadf only applicable when 0 < d < 1.
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Table 3: Level Models Results

Model Constant Base Autonomous adf(a) np(b) kpss(c)

1959 - 1971

Model 1 156556.30
(15609.80)

−0.16
(0.09)

0.06
(0.03)

−1.80
[0.07]

N N

Model 2 209463.70
(27660.90)

−0.36
(0.16)

0.33
(0.07)

−1.02
[0.27]

N N

1978 - 1986

Model 1 31922.80
(42535.60)

−0.16
(0.03)

0.72
(0.20)

−2.17
[0.03]

N N

Model 2 −13106.20
(55043.60)

0.40
(0.07)

0.89
(0.25)

−0.87
[0.34]

N N

Note: standard deviations in round brackets.
a: Probabilities derived from MacKinnon (1996) in square brackets.
b: N = Null of unit root not rejected at 5 per cent level.
c: N = Null of stationarity not rejected at 5 per cent level.
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Table 4: Non-linear Test Results

Model λE
H(g) λA

OP λE
OP (g) gOP

1959 - 1971

Model 1 No Trend 52.11 232.70 37.37 6.31
Asymptotic p- value (0.00) (0.00) (0.00) (0.28)
Bootstrapped p-value(a) (0.00) (0.00) (0.00) (0.00)

Model 1 Trend 67.73 302.44 50.49 17.29
Asymptotic p-value (0.00) (0.00) (0.00) (0.04)
Bootstrapped p-value(a) (0.00) (0.00) (0.00) (0.00)

Model 2 No Trend 40.98 313.10 28.26 9.31
Asymptotic p-value (0.00) (0.00) (0.00) (0.10)
Bootstrapped p-value(a) (0.00) (0.00) (0.00) (0.00)

Model 2 Trend 73.15 392.30 55.16 19.05
Asymptotic p-value (0.00) (0.00) (0.00) (0.03)
Bootstrapped p-value(a) (0.00) (0.00) (0.00) (0.00)

1978 - 1986

Model 1 No Trend 3.85 38.19 0.08 3.39
Asymptotic p-value (0.05) (0.00) (0.78) (0.64)
Bootstrapped p-value(a) (0.04) (0.01) (0.91) (0.00)

Model 1 Trend 8.78 145.64 1.22 200.09
Asymptotic p-value (0.00) (0.00) (0.27) (0.00)
Bootstrapped p-value(a) (0.01) (0.00) (0.68) (0.00)

Model 2 No Trend 38.50 55.88 19.07 3.38
Asymptotic p-value (0.00) (0.00) (0.00) (0.64)
Bootstrapped p-value(a) (0.00) (0.00) (0.00) (0.02)

Model 2 Trend 27.08 10.78 9.86 14.40
Asymptotic p-value (0.00) (0.38) (0.00) (0.11)
Bootstrapped p-value(a) (0.00) (0.02) (0.00) (0.01)

a: The bootstrapped p-values are based on 1,000 re-samplings.
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Table 5: Random Field Estimation

1959 - 1971 1978 - 86

Model 1 Model 2 Model 1 Model 2

WithoutTrend

Linear terms
constant 135532.2

(17182.6)
167966.1
(33984.7)

.. −53488.7
(64331.2)

base −0.03
(0.09)

−0.05
(0.16)

.. 0.45
(1.07)

autonomous 0.06
(0.05)

0.21
(0.16)

.. 1.07
(0.29)

Non-linear terms
σ 1976.4

(227.9)
2523.4
(377.5)

.. 2133.7
(642.0)

ζ 0.60
(0.19)

1.49
(0.48)

.. 0.50
(0.43)

base 0.00
(0.000025)

0.000032
(0.000058)

.. 0.00020
(0.000081)

autonomous −0.00011
(0.000026)

0.00012
(0.000012)

.. 0.00030
(0.00021)

With Trend

Linear terms
constant 134834.8

(28558.5)
302099.9
(31834.3)

45367.1
(40221.6)

..

base −0.01
(0.10)

−0.20
(0.14)

0.35
(0.21)

..

autonomous 0.03
(0.16)

−1.02
(0.25)

0.29
(0.18)

..

t 68.45
(137.1)

892.8
(181.5)

710.1
(274.9)

..

Non-linear terms
σ 1307.9

(235.9)
933.3
(657.2)

669.8
(380.9)

..

ζ 1.81
(0.77)

3.66
(3.17)

5.29
(4.28)

..

base 0.00
(0.00002)

0.00
(0.00004)

−0.000002
(0.0001)

..

autonomous 0.00
(0.00004)

0.00008
(0.0001)

0.00
(0.00002)

..

t 0.11
(0.02)

0.26
(0.03)

0.08
(0.008)

..

Note: standard deviations in parentheses.
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